Article

TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for alpha2- and alpha3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates.

Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 02/2006; 316(1):410-22. DOI: 10.1124/jpet.105.089920
Source: PubMed

ABSTRACT 7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine (TPA023) is a triazolopyridazine that binds with equivalent high (subnanomolar) affinity to the benzodiazepine binding site of recombinant human GABA(A) receptors containing an alpha1, alpha2, alpha3, or alpha5 subunit but has partial agonist efficacy at the alpha2 and alpha3 subtypes and essentially antagonist efficacy at the alpha1 and alpha5 subtypes. In rats, TPA023 gave time- and dose-dependent occupancy after oral dosing, with 50% occupancy corresponding to a dose of 0.42 mg/kg. It has anxiolytic-like activity in unconditioned (elevated plus maze) and conditioned (fear-potentiated startle and conditioned suppression of drinking) rat models of anxiety with minimum effective doses (MED; 1-3 mg/kg) corresponding to 70 to 88% occupancy. However, there was no appreciable sedation in a response sensitivity (chain-pulling) assay at a dose of 30 mg/kg, resulting in 99% occupancy. Similarly, TPA023 was robustly anxiolytic in the squirrel monkey conditioned emotional response assay, with a MED of 0.3 mg/kg, but did not produce any sedation in a lever-pressing test of sedation even at 10 mg/kg. TPA023 produced no impairment in performance in the mouse Rotarod assay, and there was only a mild interaction with ethanol. In addition to anxiolytic-like efficacy, TPA023 had anticonvulsant activity in a mouse pentylenetetrazole seizure model. Finally, TPA023 did not cause precipitated withdrawal in mice treated for 7 days with the nonselective agonist triazolam, nor did N-methyl-beta-carboline-3-carboxamide (FG 7142) precipitate withdrawal in mice treated for 7 days with TPA023. In summary, the novel alpha2/alpha3-selective efficacy profile of TPA023 translates into a nonsedating anxiolytic profile that is distinct from nonselective agonists.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory.
    Neuroscience 08/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions.Neuropsychopharmacology advance online publication, 18 September 2013; doi:10.1038/npp.2013.221.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 08/2013; · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α1-subunit-selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α2 subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α1, α2, α3, or α5), β2, and γ2 subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α2- vs. α1-receptor complexes, a difference not observed for CLN, for which no distinction between α2 and α1 receptors was observed. Our experiments with ZOL confirmed the high preference for α1 receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB.
    PLoS ONE 01/2014; 9(2):e88456. · 3.73 Impact Factor