Decorin and biglycan expression is differentially altered in several muscular dystrophies

Department of Neurological Sciences, University of Milan, Milano, Lombardy, Italy
Brain (Impact Factor: 9.2). 12/2005; 128(Pt 11):2546-55. DOI: 10.1093/brain/awh635
Source: PubMed


Biglycan and decorin are small extracellular proteoglycans that interact with cytokines, whose activity they may modulate, and with matrix proteins, particularly collagens. To better understand their role in muscle fibrosis, we investigated expression of decorin and biglycan transcripts and protein in muscle of several forms of muscular dystrophy, and also expression of perlecan, an extracellular proteoglycan unrelated to collagen deposition. In Duchenne muscular dystrophy (DMD) and LAMA2-mutated congenital muscular dystrophy (MDC1A) we also quantitated transcript levels of the profibrotic cytokine TGF-beta1. We examined muscle biopsies from nine DMD patients, aged 2-8 years; 14 BMD (Becker muscular dystrophy) patients (nine aged 1-5 years; five aged 30-37 years); four MDC1A patients (aged 2-7 years); six dysferlin-deficient patients (aged 19-53 years) with mutation ascertained in two, and normal expression of proteins related to limb girdle muscular dystrophies in the others; 10 sarcoglycan-deficient patients: seven with alpha-sarcoglycan mutation, two with beta-sarcoglycan mutation and one with gamma-sarcoglycan mutation (five aged 8-15 years; five aged 26-43 years); and nine children (aged 1-6 years) and 12 adults (aged 16-61 years) suspected of neuromuscular disease, but who had normal muscle on biopsy. Biglycan mRNA levels varied in DMD and MDC1A depending on the quantitation method, but were upregulated in BMD, sarcoglycanopathies and dysferlinopathy. Decorin mRNA was significantly downregulated in DMD and MDC1A, whereas TGF-beta1 was significantly upregulated. Decorin mRNA was normal in paediatric BMD, but upregulated in adult BMD, sarcoglycanopathies and dysferlinopathy. Perlecan transcript levels were similar to those of age-matched controls in all disease groups. By immunohistochemistry, decorin and biglycan were mainly localized in muscle connective tissue; their presence increased in relation to increased fibrosis in all dystrophic muscle. By visual inspection, decorin bands on immunoblot did not differ from those of age-matched controls in all patient groups. However, when the intensity of the bands was quantitated against vimentin and normalized against sarcomeric actin, in DMD and MDC1A the ratio of band intensities was significantly lower than in age-matched controls. Variations in the transcript and protein levels of these proteoglycans in different muscular dystrophies probably reflect the variable disruption of extracellular matrix organization that occurs in these diseases. The significantly lowered decorin levels in DMD and MDC1A may be related to the increased TGF-beta1 levels, suggesting a therapeutic role of decorin in these severe dystrophies.

Download full-text


Available from: Corrado Angelini, Apr 16, 2014
43 Reads
  • Source
    • "Further studies are needed to refine our understanding of the role of the PAI-1/miR-21 fibrogenic axis in skeletal muscle fibrosis and the disease course in DMD patients, but as the full role of the axis emerges, so too will new therapeutic targets. From all these findings, it seems that the pronounced fibrosis in human dystrophic muscles is at least partially related to an altered proteolytic activity in the dystrophic muscles due to imbalances in expression and activity of PA/MMP system components [47]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.
    BioMed Research International 05/2014; 2014(3):965631. DOI:10.1155/2014/965631 · 3.17 Impact Factor
    • "The area positive for collagens was calculated as a percentage of the entire image, and the mean percentage for each group of animals calculated. Extents of collagens I, III, and VI, and decorin were assessed on consecutive immunostained sections , in a similar manner (Zanotti et al. 2005), except that the digitized images were first inverted. Degenerating/necrotic fibers were identified on H&E-or Gomori trichrome-stained sections as those with cytoplasmic swelling (early necrosis) or as fibers invaded by macrophages (late necrosis); and by immunohistochemistry as fibers positive for C3 or albumin (Zanotti et al. 2011) (early necrosis) or for CD45, marker of mononucleated cells (late necrosis). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sgcb-null mouse, with knocked-down β-sarcoglycan, develops severe muscular dystrophy as in type 2E human limb girdle muscular dystrophy. The mdx mouse, lacking dystrophin, is the most used model for Duchenne muscular dystrophy (DMD). Unlike DMD, the mdx mouse has mild clinical features and shows little fibrosis in limb muscles. To characterize ECM protein deposition and the progression of muscle fibrosis, we evaluated protein and transcript levels of collagens I, III and VI, decorin, and TGF-β1, in quadriceps and diaphragm, at 2, 4, 8, 12, 26, and 52 weeks in Sgcb-null mice, and protein levels at 12, 26, and 52 weeks in mdx mice. In Sgcb-null mice, severe morphological disruption was present from 4 weeks in both quadriceps and diaphragm, and included conspicuous deposition of extracellular matrix components. Histopathological features of Sgcb-null mouse muscles were similar to those of age-matched mdx muscles at all ages examined, but, in the Sgcb-null mouse, the extent of connective tissue deposition was generally greater than mdx. Furthermore, in the Sgcb-null mouse, the amount of all three collagen isoforms increased steadily, while, in the mdx, they remained stable. We also found that, at 12 weeks, macrophages were significantly more numerous in mildly inflamed areas of Sgcb-null quadriceps compared to mdx quadriceps (but not in highly inflamed regions), while, in the diaphragm, macrophages did not differ significantly between the two models, in either region. Osteopontin mRNA was also significantly greater at 12 weeks in laser-dissected highly inflamed areas of the Sgcb-null quadriceps compared to the mdx quadriceps. TGF-β1 was present in areas of degeneration-regeneration, but levels were highly variable and in general did not differ significantly between the two models and controls. The roles of the various subtypes of macrophages in muscle repair and fibrosis in the two models require further study. The Sgcb-null mouse, which develops early fibrosis in limb muscles, appears more promising than the mdx mouse for probing pathogenetic mechanisms of muscle fibrosis and for developing anti-fibrotic treatments. Highlights • The Sgcb-null mouse develops severe muscular dystrophy, the mdx mouse does not.• Fibrosis developed earlier in Sgcb-null quadriceps and diaphragm than mdx.• Macrophages were commoner in mildly inflamed parts of Sgcb-null quadriceps than mdx.• The Sgcb-null model appears more useful than mdx for studying fibrotic mechanisms.• The Sgcb-null model also appears more useful for developing anti-fibrotic treatments.
    Cell and Tissue Research 04/2014; 356(2). DOI:10.1007/s00441-014-1854-4 · 3.57 Impact Factor
  • Source
    • "The extent of connective tissue was measured on collagen VI immunostained sections as previously described [35] using the NIH Image software version 1.44 ( At least six fields from each patient were analysed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
    PLoS ONE 10/2013; 8(10):e77430. DOI:10.1371/journal.pone.0077430 · 3.23 Impact Factor
Show more

Similar Publications