Article

Alginate as a source of dietary fiber.

Cell & Molecular Biosciences, University of Newcastle-upon-Tyne, NE2 4HH, UK.
Critical Reviews in Food Science and Nutrition (Impact Factor: 4.82). 02/2005; 45(6):497-510. DOI: 10.1080/10408390500285673
Source: PubMed

ABSTRACT Alginate, an algal polysaccharide, is widely used in the food industry as a stabilizer, or as a thickening or emulsifying agent. As an indigestible polysaccharide, alginate may also be viewed as a source of dietary fiber. Previous work has suggested that dietary fibres may protect against the onset and continuation of a number of cardiovascular and gastrointestinal diseases. This article aims to examine what is currently understood about the fiber-like activities of alginate, particularly its effects on intestinal absorption and the colon, and therefore aims to gauge the potential use of alginate as a dietary supplement for the maintenance of normal health, or the alleviation of certain cardiovascular or gastrointestinal diseases.

3 Bookmarks
 · 
352 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Daily consumption of seaweed has been proposed as a factor in explaining lower postmenopausal breast cancer (BC) incidence and mortality rates in Japan. This clinical trial assessed the impact of introducing seaweed- to non-seaweed-consuming American postmenopausal women. Fifteen healthy postmenopausal women were recruited for a 3-month single-blinded placebo controlled clinical trial; five had no history of BC (controls) and ten were BC survivors. Participants ingested ten capsules daily (5 g day(-1)) of placebo for 4 weeks, seaweed (Undaria) for 4 weeks, then placebo for another 4 weeks. Blood and urine samples were collected after each treatment period. Urinary human urokinase-type plasminogen activator receptor concentrations (uPAR) were analyzed by ELISA, and urine and serum were analyzed for protein expression using surface-enhanced laser desorption/ionization-time-of-flight mass spectrometry (SELDI-TOF-MS). Urinary creatinine standardized uPAR (in pg mL μg(-1) creatinine) changed significantly between groups, decreasing by about half following seaweed supplementation (placebo 1, 1.5 (95 % CI, 0.9-2.1) and seaweed, 0.9 (95 % CI, 0.6-1.1) while placebo 2 returned to pre-seaweed concentration (1.7 (95 % CI, 1.2-2.2); p = 0.01, ANOVA). One SELDI-TOF-MS-identified urinary protein (m/z 9,776) showed a similar reversible decrease with seaweed and is reported to be associated with cell attachment. One serum protein (m/z 8,928) reversibly increased with seaweed and may be the immunostimulatory complement activation C3a des-arginine. uPAR is higher among postmenopausal women generally, and for BC patients, it is associated with unfavorable BC prognosis. By lowering uPAR, dietary seaweed may help explain lower BC incidence and mortality among postmenopausal women in Japan.
    Journal of Applied Phycology 06/2013; 25(3):771-779. · 2.33 Impact Factor
  • Source
    Current Nanoscience 08/2013; 999(999):25-30. · 1.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seaweeds as food and seaweed-derived food flavors, colors, and nutrients are attracting considerable commercial attention. In the baking industries, hydrocolloids are of increasing importance as bread making improvers, where their use aims to improve dough handling properties, increase the quality of fresh bread, and extend the shelf life of stored bread. Seaweeds contain a significant amount of soluble polysaccharides and have the potential function as a source of dietary fiber. In this study, red seaweed (Kappaphycus alvarezii) powder was incorporated (2–8 %) with wheat flour and used to produce bread. The effect of seaweed composite flour on dough rheological properties and the quality of bread was investigated using various techniques. Farinograph tests were applied to determine the effect of seaweed powder on the rheological properties of wheat flour dough, while texture profile analysis (TPA) was used to measure the textural properties of dough as well as the final product. The results showed that the additions of seaweed powder (2–8 %) increased the water absorption of the dough. TPA results showed that the addition of seaweed powder decreased stickiness properties. Bread produced with seaweed composite flour showed higher values of firmness.
    Journal of Applied Phycology · 2.33 Impact Factor

Full-text (2 Sources)

View
1,507 Downloads
Available from
May 27, 2014