The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development.

Department of Visceral and Transplantation Surgery, University of Ulm, Germany.
Onkologie (Impact Factor: 0.84). 11/2005; 28(10):508-14. DOI: 10.1159/000087137
Source: PubMed

ABSTRACT The members of the casein kinase 1 (CK1) family are highly conserved and are expressed in many eukaryotes ranging from yeast to humans. Mammalian CK1 isoforms (alpha, beta, gamma, delta, epsilon) and their splice variants are involved in diverse cellular processes including membrane trafficking, circadian rhythm, cell cycle progression, chromosome segregation, apoptosis and cellular differentiation. Mutations and deregulation of CK1 expression and activity has been linked to various diseases including neurodegenerative disorders such as Alzheimer's and Parkinson's disease, sleeping disorders and proliferative diseases such as cancer. In this review, we summarize the functions of CK1 and outline the participation of CK1 in signal transduction pathways linked to cancer development.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification. INTRODUCTION Medulloblastoma (MB), a tumor arising in the cerebellum or medulla is the most prevalent malignant brain tumor in children [1]. Current treatments including surgery, craniospinal radiotherapy and chemotherapy have improved survival rates, which nowadays are approximately 80% [2, 3]. Nevertheless, there are still numerous patients with poor prognosis and survivors suffer from diminished quality of life caused by the aggressive therapy [2]. The current classification system for medulloblastoma is based on morphology (histopathology), and include variants such as desmoplastic/nodular, MBEN (medulloblastoma with extensive nodularity), classic medulloblastoma, large cell, and anaplastic medulloblastoma [4, 5]. During the past few years, transcriptome-based, molecular studies on cohorts of MB have depicted this tumor not as a single disease, but as a cluster of individual molecular subgroups. Four subtypes have been proposed with distinct characteristics in terms of gene expression, mutational profiles, epidemiology, and prognosis: Wnt, Shh, Group 3, and Group 4 [3, 6-8]. The most aggressive MB subtype (Group 3), that consists of 'classical' medulloblastomas and partially of the large cells/anaplastic (LCA) tumors is associated with amplification in cMyc [4]. Current treatments fail to cure two thirds of patients in this particular group [8]. Thus, it remains of great interest to investigate which role c-Myc plays in the biology of MB. c-Myc, a potent and frequently deregulated
    Oncotarget 11/2014; 1. · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of lymphoid neoplasms has improved considerably during the last decades. However, treatment response for some lymphoid neoplasms is still poor, indicating the need for new therapeutic approaches. One promising new strategy is the inhibition of kinases regulating key signal transduction pathways, which are of central importance in tumorigenesis. Kinases of the CK1 family may represent an attractive drug target since CK1 expression and/or activity are associated with the pathogenesis of malignant diseases. Over the last years efforts were taken to develop highly potent and selective CK1-specific inhibitor compounds and their therapeutic potential has now to be proved in pre-clinical trials. Therefore, we analyzed expression and mutational status of CK1δ in several cell lines representing established lymphoma entities, and also measured the mRNA expression level in primary lymphoma tissue as well as in non-neoplastic blood cells. For a selection of lymphoma cell lines we furthermore determined CK1δ kinase activity and demonstrated therapeutic potential of CK1-specific inhibitors as a putative therapeutic option in the treatment of lymphoid neoplasms.
    Frontiers in Cell and Developmental Biology 01/2015; 3:9. DOI:10.3389/fcell.2015.00009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
    Molecular Cancer 10/2014; 13(1):231. DOI:10.1186/1476-4598-13-231 · 5.40 Impact Factor