Glycopeptide Resistance vanA Operons in Paenibacillus Strains Isolated from Soil

Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.48). 10/2005; 49(10):4227-33. DOI: 10.1128/AAC.49.10.4227-4233.2005
Source: PubMed


The sequence and gene organization of the van operons in vancomycin (MIC of >256 μg/ml)- and teicoplanin (MIC of ≥32 μg/ml)-resistant Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B isolated from soil were determined. Both operons had regulatory (vanR and vanS), resistance (vanH, vanA, and vanX), and accessory (vanY, vanZ, and vanW) genes homologous to the corresponding genes in enterococcal vanA and vanB operons. The vanAPT operon in P. thiaminolyticus PT-2B1 had the same gene organization as that of vanA operons whereas vanAPA in P. apiarius PA-B2B resembled vanB operons due to the presence of vanW upstream from the vanHAX cluster but was closer to vanA operons in sequence. Reference P. apiarius strains NRRL B-4299 and NRRL B-4188 were found to harbor operons indistinguishable from vanAPA by PCR mapping, restriction fragment length polymorphism, and partial sequencing, suggesting that this operon was species
specific. As in enterococci, resistance was inducible by glycopeptides and associated with the synthesis of pentadepsipeptide
peptidoglycan precursors ending in d-Ala-d-Lac, as demonstrated by d,d-dipeptidase activities, high-pressure liquid chromatography, and mass spectrometry. The precursors differed from those in
enterococci by the presence of diaminopimelic acid instead of lysine in the peptide chain. Altogether, the results are compatible
with the notion that van operons in soil Paenibacillus strains and in enterococci have evolved from a common ancestor.

Download full-text


Available from: Bruno Périchon, Nov 24, 2014
  • Source
    • "The actual origin of the genes responsible for high-level vancomycin resistance in enterococci has been linked to soil Paenibacillus spp. (Guardabassi et al 2005). Denitrification, the anaerobic reduction of nitrate (NO 3 − ) to gaseous nitrogen (N 2 ), is a key process in the biogeochemical nitrogen cycle and the primary biological pathway by which biologically fixed or synthetic added nitrogen is converted to a gaseous form and removed from ecosystems. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.
    Environmental Science and Pollution Research 02/2015; 22(18). DOI:10.1007/s11356-015-4159-6 · 2.83 Impact Factor
  • Source
    • "The most common resistance pattern (lincomycin-penicillin) was found in two Bacillus and two Paenibacillus isolates (Table 2); in addition, one strain showed resistance to lincomycin-streptomycin, two strains showed resistant to streptomycin only, and one strain showed resistance to lincomycin only (Table 2). While this is, to our knowledge, the first report of antimicrobial resistant Bacillus and Paenibacillus isolates from milk, previous studies have reported antimicrobial resistance in disease associated Paenibacillus isolates, including (i) resistance to metronidazole [30], tetracycline [39], and glycopeptides [40] in P. larvae, which is associated with disease in honeybees and (ii) multi-drug resistance (to glycopeptide, beta-lactams, aminoglycosides, macrolides and lincosomides) in a Paenibacillus isolated from fertile soil in India [41]. Similarly, antimicrobial resistant Bacillus isolates have previously been isolated from a variety of clinical [42-44] and non-clinical [45] sources. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sporeformers in the order Bacillales are important contributors to spoilage of pasteurized milk. While only a few Bacillus and Viridibacillus strains can grow in milk at 6[degree sign]C, the majority of Paenibacillus isolated from pasteurized fluid milk can grow under these conditions. To gain a better understanding of genomic features of these important spoilage organisms and to identify candidate genomic features that may facilitate cold growth in milk, we performed a comparative genomic analysis of selected dairy associated sporeformers representing isolates that can and cannot grow in milk at 6[degree sign]C. The genomes for seven Paenibacillus spp., two Bacillus spp., and one Viridibacillus sp. isolates were sequenced. Across the genomes sequenced, we identified numerous genes encoding antimicrobial resistance mechanisms, bacteriocins, and pathways for synthesis of non-ribosomal peptide antibiotics. Phylogenetic analysis placed genomes representing Bacillus, Paenibacillus and Viridibacillus into three distinct well supported clades and further classified the Paenibacillus strains characterized here into three distinct clades, including (i) clade I, which contains one strain able to grow at 6[degree sign]C in skim milk broth and one strain not able to grow under these conditions, (ii) clade II, which contains three strains able to grow at 6[degree sign]C in skim milk broth, and (iii) clade III, which contains two strains unable to grow under these conditions. While all Paenibacillus genomes were found to include multiple copies of genes encoding beta-galactosidases, clade II strains showed significantly higher numbers of genes encoding these enzymes as compared to clade III strains. Genome comparison of strains able to grow at 6[degree sign]C and strains unable to grow at this temperature identified numerous genes encoding features that might facilitate the growth of Paenibacillus in milk at 6[degree sign]C, including peptidases with cold-adapted features (flexibility and disorder regions in the protein structure) and cold-adaptation related proteins (DEAD-box helicases, chaperone DnaJ). Through a comparative genomics approach we identified a number of genomic features that may relate to the ability of selected Paenibacillus strains to cause spoilage of refrigerated fluid milk. With additional experimental evidence, these data will facilitate identification of targets to detect and control Gram positive spore formers in fluid milk.
    BMC Genomics 01/2014; 15(1):26. DOI:10.1186/1471-2164-15-26 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Literatur   1.  Aarestrup FM, Butaye P, Witte W. Nonhuman reservoirs of enterococci.  In: Gilmore MS (editor). The enterococci: Pathogenesis, molecular bio-logy, and antibiotic resistance. Washington, D.C.: ASM Press, 2002:55– 100.   2.  Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev  1990;3:46–65.   3.  Sherman  JM.  The  enterococci  and  related  streptococci.  J  Bacteriol  1938;35:81–93.   4.  Schleifer  KH,  Kilpper-Balz  R.  Molecular  and  chemotaxonomic  ap-proaches to the classification of streptococci, enterococci, and lactococ-ci: a review. Syst Appl Microbiol 1987;10:1–9.   5.  Facklam RR, Carvalho MdGS, Teixeira LM. History, taxonomy, biochemi-cal characteristics, and antibiotic susceptibility testing of enterococci.  In: Gilmore MS (editor). The enterococci: Pathogenesis, molecular biolo-gy, and antibiotic resistance. Washington, D.C.: ASM Press, 2002:1–54.   6.  Svec P, Vancanneyt M, Devriese LA, Naser SM, et al. Enterococcus aqui-marinus  sp.  nov.,  isolated  from  sea  water.  Int  J  Syst  Evol  Microbiol  2005;55:2183–7.   7.  Svec P, Vancanneyt M, Koort J, Naser SM, et al. Enterococcus devriesei  sp.  nov.,  associated  with  animal  sources.  Int  J  Syst  Evol  Microbiol  2005;55:2479–84.   8.  Svec P, Vancanneyt M, Sedlacek I, Naser SM, et al. Enterococcus silesia-cus sp. nov. and Enterococcus termitis sp. nov. Int J Syst Evol Microbiol  2006;56:577–81.   9.  Kohler W. The present state of species within the genera Streptococcus  and Enterococcus. Int J Med Microb 2007;297:133–50. 10.  Naser SM, Vancanneyt M, De GE, Devriese LA, et al. Enterococcus can-intestini  sp.  nov.,  from  faecal  samples  of  healthy  dogs.  Int  J  Syst  Evol  Microbiol 2005;55:2177–82. 11.  Naser  SM,  Vancanneyt  M,  Hoste  B,  Snauwaert  C,  et al.  Reclassification  of Enterococcus flavescens Pompei et al. 1992 as a later synonym of En-terococcus casseliflavus (ex Vaughan et al. 1979) Collins et al. 1984 and  Enterococcus saccharominimus Vancanneyt et al. 2004 as a later syno-nym of Enterococcus italicus Fortina et al. 2004. Int J Syst Evol Microbi-ol 2006;56:413–6. 12.  Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin  Microbiol Rev 2000;13:686–707. 13.  Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med  2000;342:710–21. 14.  Low DE, Keller N, Barth A, Jones RN. Clinical prevalence, antimicrobial  susceptibility,  and  geographic  resistance  patterns  of  enterococci:  re-sults from the SENTRY Antimicrobial Surveillance Program, 1997–1999.  Clin Infect Dis 2001;32(Suppl 2):S133–45. 15.  Treitman  AN,  Yarnold  PR,  Warren  J,  Noskin  GA.  Emerging  incidence  of Enterococcus faecium among hospital isolates (1993 to 2002). J Clin  Microbiol 2005;43:462–3. 16.  Top  J,  Willems  R,  Blok  H,  de  Regt  M,  et al.  Ecological  replacement  of  Enterococcus faecalis by multiresistant clonal complex 17 Enterococcus  faecium. Clin Microbiol Inf 2007;13:316–9. 17.  Klare  I,  Konstabel  C,  Badstubner  D,  Werner  G,  et al.  Occurrence  and  spread  of  antibiotic  resistances  in  Enterococcus  faecium.  Int  J  Food  Microbiol 2003;88:269–90. 18.  Reid KC, Cockerill III FR, Patel R. Clinical and epidemiological features  of  Enterococcus  casseliflavus/flavescens  and  Enterococcus  gallinarum  bacteremia: a report of 20 cases. Clin Infect Dis 2001;32:1540–6. 19.  Ruess  M,  Sander  A,  Hentschel  R,  Berner  R.  Enterococcus  casseliflavus  septicaemia in a preterm neonate. Scand J Infect Dis 2002;34:471–2. 20.  Takayama Y, Sunakawa K, Akahoshi T. Meningitis caused by Enterococ-cus  gallinarum  in  patients  with  ventriculoperitoneal  shunts.  J  Infect  Chemother 2003;9:348–50. 21.  Dargere  S,  Vergnaud  M,  Verdon  R,  Saloux  E,  et al.  Enterococcus  galli-narum endocarditis occurring on native heart valves. J Clin Microbiol  2002;40:2308–10. 22.  Malami PN, Kauffman CA, Zervos MJ. Enterococcal disease, epidemiolo-gy, and treatment. In: Gilmore MS (editor). The enterococci: Pathogene-sis, molecular biology, and antibiotic resistance. Washington, D.C.: ASM  Press, 2002:385–408. 23.  Barwolff S, Grundmann H, Schwab F, Tami A, et al. Incidence of trans-mission of pathogens in intensive care units. Results of the SIR 3 study.  Anaesthesist 2005;54:560–6. 24.  Grundmann  H,  Barwolff  S,  Tami  A,  Behnke  M,  et al.  How  many  infec-tions  are  caused  by  patient-to-patient  transmission  in  intensive  care  units? Crit Care Med 2005;33:946–51. 25.  Gastmeier P, Schwab F, Barwolff S, Ruden H, et al. Correlation between  the genetic diversity of nosocomial pathogens and their survival time  in intensive care units. J Hosp Infect 2006;62:181–6. 26.  Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci:  why  are  they  here,  and  where  do  they  come  from?  Lancet  Infect  Dis  2001;1:314–25. 27.  Mascini EM, Bonten MJ. Vancomycin-resistant enterococci: consequences  for therapy and infection control. Clin Microbiol Infect 2005;11(Suppl  4):43–56. 28.  Fridkin SK, Edwards JR, Courval JM, Hill H, et al. The effect of vancomy-cin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann Intern  Med 2001;135:175–83. 29.  Fridkin  SK,  Lawton  R,  Edwards  JR,  Tenover  FC,  et al.  Monitoring  anti-microbial use and resistance: comparison with a national benchmark  on  reducing  vancomycin  use  and  vancomycin-resistant  enterococci.  Emerg Infect Dis 2002;8:702–7. 30.  Zirakzadeh A, Patel R. Vancomycin-resistant enterococci: colonization,  infection, detection, and treatment. Mayo Clin Proc 2006;81:529–36. 31.  Bonten  MJ,  Slaughter  S,  Ambergen  AW,  Hayden  MK,  et al.  The  role  of  "colonization  pressure"  in  the  spread  of  vancomycin-resistant  ente-rococci:  an  important  infection  control  variable.  Arch  Intern  Med  1998;158:1127–32. 32.  de Bruin MA, Riley LW. Does vancomycin prescribing intervention affect  vancomycin-resistant Enterococcus infection and colonization in hospi-tals? A systematic review. BMC Infect Dis 2007;7:24. 33.  Costa Y, Galimand M, Leclercq R, Duval J, et al. Characterization of the  chromosomal  aac(6')-Ii  gene  specific  for  Enterococcus  faecium.  Anti-microb Agents Chemother 1993;37:1896–903. 34.  Singh KV, Malathum K, Murray BE. Disruption of an Enterococcus faeci-um species-specific gene, a homologue of acquired macrolide resistance  genes  of  staphylococci,  is  associated  with  an  increase  in  macrolide  susceptibility. Antimicrob Agents Chemother 2001;45:263–6. 35.  Malathum K, Singh KV, Murray BE. In vitro activity of moxifloxacin, a  new 8-methoxyquinolone, against gram-positive bacteria. Diagn Micro-biol Infect Dis 1999;35:127–33. 36.  Arsene S, Leclercq R. Role of a qnr-like gene in the intrinsic resistance of  Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemo-ther 2007;51:3254–8. 37.  Reynolds PE, Courvalin P. Vancomycin resistance in enterococci due to  synthesis  of  precursors  terminating  in  D-alanyl-D-serine.  Antimicrob  Agents Chemother 2005;49:21–5. 38.  Klare I, Werner G, Witte W. Enterococci. Habitats, infections, virulence  factors, resistances to antibiotics, transfer of resistance determinants.  Contrib Microbiol 2001;8:108–22.
Show more