Article

Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells.

Division of Pathology and Laboratory Medicine, Box 72, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
American Journal Of Pathology (Impact Factor: 4.6). 11/2005; 167(4):969-80. DOI: 10.1016/S0002-9440(10)61187-X
Source: PubMed

ABSTRACT Signal transducer and activator of transcription 3 (STAT3) has oncogenic potential. The biological effects of STAT3 have not been studied extensively in the pathogenesis of colon cancer, nor has the role of Janus kinase 3 (JAK3), the physiological activator of STAT3, been evaluated. Here, we demonstrate that activated STAT3 (pSTAT3) and activated JAK3 (pJAK3) are expressed constitutively in two colon cancer cell lines, SW480 and HT29. To evaluate the significance of JAK3/STAT3 signaling, we inhibited JAK3 with AG490 and STAT3 with a dominant-negative construct. Inhibition of JAK3 down-regulated pSTAT3. The blockade of JAK3/STAT3 signaling significantly decreased viability of colon cancer cells due to apoptosis and cell-cycle arrest through down-regulation of Bcl-2, Bcl-X(L), Mcl-1, and cyclin D2 and up-regulation of p21(waf1/cip1) and p27(kip1). We also examined histological sections from 22 tumors from patients with stage II or stage IV colon cancer and found STAT3, JAK3, and their activated forms to be frequently expressed. Furthermore, quantitative reverse transcriptase-polymerase chain reaction identified JAK3 mRNA in colon cancer cell lines and primary tumors. Our findings illustrate the biological importance of JAK3/STAT3 activation in the oncogenesis of colon cancer and provide novel evidence that JAK3 is expressed and contributes to STAT3 activation in this malignant neoplasm.

0 Bookmarks
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the association between several biological markers and fluorine-18 fluorodeoxyglucose (FDG) uptake in patients with hepatocellular carcinoma.
    American Journal of Clinical Pathology 09/2014; 142(3):391-7. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulated evidences have demonstrated that signal transducer and activator of transcription 3 (STAT3) is a critical link between inflammation and cancer. Multiple studies have indicated that persistent activation of STAT3 in epithelial/tumor cells in inflammation-associated colorectal cancer (CRC) is associated with sphingosine-1-phosphate (S1P) receptor signaling. In inflammatory response whereby interleukin (IL)-6 production is abundant, STAT3-mediated pathways were found to promote the activation of sphingosine kinases (SphK1 and SphK2) leading to the production of S1P. Reciprocally, S1P encourages the activation of STAT3 through a positive autocrine-loop signaling. The crosstalk between IL-6, STAT3 and sphingolipid regulated pathways may play an essential role in tumorigenesis and tumor progression in inflamed intestines. Therapeutics targeting both STAT3 and sphingolipid are therefore likely to contribute novel and more effective therapeutic strategies against inflammation-associated CRC.
    World journal of gastroenterology : WJG. 08/2014; 20(30):10279-10287.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is one of the most common malignancies resulting in high mortality worldwide. Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor which is frequently activated and aberrantly expressed in CRC. MicroRNAs (miRNAs) are a class of small noncoding RNAs which play important roles in many cancers. However, little is known about the global miRNA profiles mediated by STAT3 in CRC cells. In the present study, we applied RNA interference to inhibit STAT3 expression and profiled the miRNA expression levels regulated by STAT3 in CRC cell lines with deep sequencing. We found that 26 and 21 known miRNAs were significantly overexpressed and downexpressed, respectively, in the STAT3-knockdown CRC cell line SW480 (SW480/STAT3-siRNA) compared to SW480 transfected with scrambled siRNAs (SW480/siRNA-control). The miRNA expression profiling was then validated by quantitative real-time PCR for selected known miRNAs. We further predicted the putative target genes for the dysregulated miRNAs and carried out functional annotation including GO enrichment and KEGG pathway analysis for selected miRNA targets. This study directly depicts STAT3-mediated miRNA profiles in CRC cells, which provides a possible way to discover biomarkers for CRC therapy.
    BioMed Research International 01/2014; 2014:187105. · 2.71 Impact Factor

Full-text (2 Sources)

Download
66 Downloads
Available from
May 29, 2014