Membrane voltage modulates the GABA(A) receptor gating in cultured rat hippocampal neurons.

Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3, 50-368 Wrocław, Poland.
Neuropharmacology (Impact Factor: 4.82). 03/2006; 50(2):143-53. DOI: 10.1016/j.neuropharm.2005.08.001
Source: PubMed

ABSTRACT The kinetics of GABAergic currents in neurons is known to be modulated by the membrane voltage but the underlying mechanisms have not been fully explored. In particular, the impact of membrane potential on the GABA(A) receptor gating has not been elucidated. In the present study, the effect of membrane voltage on current responses elicited by ultrafast GABA applications was studied in cultured hippocampal neurons. The current to voltage relationship (I-V) for responses to saturating [GABA] (10 mM) showed an inward rectification (slope conductance at positive voltages was 0.62 +/- 0.05 of that at negative potentials). On the contrary, I-V for currents evoked by low [GABA] (1 microM) showed an outward rectification. The onset of currents elicited by saturating [GABA] was significantly accelerated at positive potentials. Analysis of currents evoked by prolonged applications of saturating [GABA] revealed that positive voltages significantly increased the rate and extent of desensitization. The onsets of current responses to non-saturating [GABA] were significantly accelerated at positive voltages indicating an enhancement of the binding rate. However, at low [GABA] at which the onset rate is expected to approach an asymptote set by opening/closing and unbinding rates, no significant modification of current onset by voltage was observed. Quantitative analysis based on model simulations indicated that the major effect of membrane depolarization was to increase the rates of binding, desensitization and of opening as well as to slightly reduce the rate of exit from desensitization. In conclusion, we provide evidence that membrane voltage affects the GABA(A) receptor microscopic gating.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Falcarindiol (1), a C-17 polyacetylenic diol, shows a pleiotropic profile of bioactivity, but the mechanism(s) underlying its actions are largely unknown. Large amounts of 1 co-occur in water hemlock (Oenanthe crocata) along with the convulsant polyacetylenic toxin oenanthotoxin (2), a potent GABA(A) receptor (GABA(A)R) inhibitor. Since these compounds are structurally and biogenetically related, it was considered of interest to evaluate whether 1 could affect GABAergic activity, and for this purpose a model of hippocampal cultured neurons was used. Compound 1 significantly increased the amplitude of miniature inhibitory postsynaptic currents, accelerated their onset, and prolonged the decay kinetics. This compound enhanced also the amplitude of currents elicited by 3 μM GABA and accelerated their fading, reducing, however, currents evoked by a saturating (10 mM) GABA concentration. Moreover, kinetic analysis of responses to 10 mM GABA revealed that 1 upregulated the rate and extent of desensitization and slowed the current onset and deactivation. Taken together, these data show that 1 exerts a potent modulatory action on GABA(A)Rs, possibly by modulating agonist binding and desensitization, overall potentially decreasing the toxicity of co-occurring GABA-inhibiting convulsant toxins.
    Journal of Natural Products 03/2012; 75(4):610-6. DOI:10.1021/np2008522 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The GABA type A receptor (GABA(A)R) is expressed ubiquitously throughout the brain and is a target for many therapeutic agents, including general anesthetics and benzodiazepines, which enhance receptor function by increasing the open probability (P(o)) of the ion channel. It is commonplace for in vitro studies of receptor pharmacological characteristics to use negative membrane holding potentials to mimic the resting potential of neurons and symmetrical chloride to eliminate Goldman rectification, which results in chloride flow in the opposite direction, compared with in vivo conditions. This critical difference is usually overlooked because the GABA(A)R has been reported to behave as an ohmic pore, but our results show that the current-voltage relationship is nonlinear with respect to P(o). Specifically, we found that currents were outwardly rectifying at low P(o) and linear at high P(o). We confirmed the correlation between P(o) and rectification with a partial agonist, piperidine-4-sulfonic acid, and a gating-impaired mutation, α1(L277A); both exhibited enhanced outward rectification. Furthermore, this correlation was independent of Goldman rectification and persisted under altered chloride gradient conditions, which suggests that rectification is linked to the direction of chloride flux. Finally, our results showed that the degree of potentiation by general anesthetics (etomidate, propofol, and isoflurane) was greater at negative membrane potentials. Traditional in vitro experiments thus overestimate the action of positive allosteric modulators of the GABA(A)R. Our results show that the direction of the driving force on the permeant ion, as well as P(o), must be considered together for a complete understanding of drug actions on ligand-gated ion channels.
    Molecular pharmacology 02/2012; 81(2):189-97. DOI:10.1124/mol.111.074476 · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This contribution deals with the optimization of the design of reactive distillation columns by using a memetic algorithm (MA) which is a combination of an evolution strategy (ES) and a mathematical programming (MP) solver. The focus of this paper is on the restriction on the number of feed trays that introduces discrete variables into the problem formulation. The optimization of the number and of the location of the feed streams is addressed by the EA which can deal with discontinuous cost functions and integrality constraints. A minimization of the number of feed streams is achieved by adding penalties to the fitness function of the EA. The results of the new approach are compared to the results of the optimization without restriction on and the minimization of the number of feed streams.
    Computers & Chemical Engineering 05/2011; 35(5):787-805. DOI:10.1016/S1570-7946(10)28208-1 · 2.45 Impact Factor