Article

Ferguson BE, Oh DH.Proficient global nucleotide excision repair in human keratinocytes but not in fibroblasts deficient in p53. Cancer Res 65:8723-8729

Department of Dermatology, University of California-San Francisco, San Francisco VA Medical Center, San Francisco, California 94121, USA.
Cancer Research (Impact Factor: 9.28). 11/2005; 65(19):8723-9. DOI: 10.1158/0008-5472.CAN-05-1457
Source: PubMed

ABSTRACT The p53 tumor suppressor protein is important for many cellular responses to DNA damage in mammalian cells, but its role in regulating DNA repair in human keratinocytes is undefined. We compared the nucleotide excision repair (NER) response of human fibroblasts and keratinocytes deficient in p53. Fibroblasts expressing human papillomavirus 16 E6 oncoprotein had impaired repair of UV radiation-induced cyclobutane pyrimidine dimers in association with reduced levels of p53 and XPC, which is involved in DNA damage recognition. In contrast, keratinocytes expressing E6 alone or concurrently with the E7 oncoprotein, while possessing reduced levels of p53 but normal levels of XPC, continued to repair pyrimidine dimers as efficiently as control cells with normal p53 levels. Despite preservation of DNA repair, E6 and E6/E7 keratinocytes were hypersensitive to UV radiation. E6 fibroblasts exhibited markedly reduced basal and induced levels of mRNA encoding DDB2, another protein implicated in early events in global NER. In contrast, E6 or E6/E7 keratinocytes possessed basal DDB2 mRNA levels that were not significantly altered relative to control cells, although little induction occurred following UV radiation. Intact global NER was also confirmed in SCC25 cells possessing inactivating mutations in p53 as well as in cells treated with pifithrin-alpha, a chemical inhibitor of p53 that decreased sensitivity of cells to UV radiation. Collectively, these results indicate that human keratinocytes, unlike fibroblasts, do not require p53 to maintain basal global NER activity, but p53 may still be important in mediating inducible responses following DNA damage.

1 Follower
 · 
63 Views
 · 
0 Downloads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The epidermis has evolved to provide a barrier against the environment, which is essential for survival. This barrier is constituted and continuously regenerated by terminally differentiating keratinocytes. Here, we summarize the main features of the response to UVB and oxidizing agents of human keratinocytes and compare it with that of fibroblasts. Keratinocytes are more resistant to the lethal effects of UVB than fibroblasts and remove cyclobutane pyrimidine dimers (CPD) more efficiently than fibroblasts. UV photoproducts are repaired by the nucleotide excision repair (NER) system by two distinct sub-pathways: global genome repair (GGR) that repairs lesions on the genome overall, and transcription coupled repair (TCR) that operates on transcribed sequences of active genes. By using NER-defective cells we demonstrated that the improved repair of UVB damage by keratinocytes is due to a more efficient GGR. A defect in TCR was associated with a strong apoptotic response in fibroblasts but not in keratinocytes, whereas a defect in GGR had no effect on the apoptotic response of either cell type. We speculate that the persistence of CPD in the transcribed sequences triggers apoptosis in fibroblasts but not in keratinocytes where GGR operates as back-up system to remove transcription-blocking lesions. As observed for UVB, keratinocytes are also more resistant to the lethal effects of oxidizing agents than fibroblasts. We show that keratinocytes are characterized by a strong anti-oxidant capacity and a higher susceptibility to reactive oxygen species (ROS)-induced apoptosis than fibroblasts. All together these results provide a clear evidence that the response to environmental agents is strongly affected by the type of damage as well as by the cellular background.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 02/2007; 614(1-2):37-47. DOI:10.1016/j.mrfmmm.2006.06.009 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet (UV) exposure induces an up-regulation of melanocortin-1 receptor (MC1R) expression in human skin and the alpha-melanocyte-stimulating hormone (alpha-MSH) may reduce UVB-induced DNA damage in normal human melanocytes. Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of DNA lesions in UVB-irradiated HaCaT cells stably transfected with the wild type MC1R gene (HaCaT-MC1R). Similar levels of 8 bipyrimidine photoproducts including cyclobutane pyrimidine dimers (CPDs) (T<>T, T<>C, C<>T), (6-4) photoproducts ((6-4)PPs) (TT-(6-4)PPs, TC-(6-4)PPs) and their Dewar valence isomers together with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were found to be generated in both non-transfected and HaCaT-MC1R cells after UVB exposure. Time-course studies of DNA photoproduct yields indicated that the DNA repair ability depended upon radiation doses. It was shown that (6-4)PPs were removed from the DNA of UVB-irradiated cells much more efficiently than CPDs. The repair efficiency of 8-oxodGuo, CPDs and (6-4)PPs was relatively similar in both cell lines and was not modified by stimulation with alpha-MSH before UVB-exposure. In conclusion, cell surface-enforced expression of MC1Rs on HaCaT keratinocytes and alpha-MSH stimulation do not affect the formation of UVB-induced DNA photoproducts and their subsequent repair.
    Photochemical and Photobiological Sciences 06/2007; 6(5):585-93. DOI:10.1039/b615656h · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cockayne syndrome (CS) is a rare recessive disorder characterized by a number of developmental abnormalities and premature aging. Two complementation groups (A and B) have been identified so far in CS cases. Defective transcription-coupled nucleotide excision repair is the hallmark of these patients, but in recent years evidence has been presented for a possible defect in the base excision repair pathway that removes oxidized bases. Recent results indicate that both A and B complementation groups are involved but the phenotypical consequences of this flaw remain undetermined.
    Free Radical Biology and Medicine 08/2007; 43(2):165-77. DOI:10.1016/j.freeradbiomed.2007.04.001 · 5.71 Impact Factor
Show more

Preview

Download
0 Downloads