Article

In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog.

Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.
Nature (Impact Factor: 42.35). 11/2005; 437(7060):894-7. DOI: 10.1038/nature03994
Source: PubMed

ABSTRACT Sonic hedgehog (Shh) has been implicated in the ongoing neurogenesis in postnatal rodent brains. Here we adopted an in vivo genetic fate-mapping strategy, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of Shh-responding cells in the adult mouse forebrain. We show that initially, only a small population of cells (including both quiescent neural stem cells and transit-amplifying cells) responds to Shh in regions undergoing neurogenesis. This population subsequently expands markedly to continuously provide new neurons in the forebrain. Our study of the behaviour of quiescent neural stem cells provides in vivo evidence that they can self-renew for over a year and generate multiple cell types. Furthermore, we show that the neural stem cell niches in the subventricular zone and dentate gyrus are established sequentially and not until late embryonic stages.

0 Followers
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Seminars in Cancer Biology 03/2015; ePub ahead of print. DOI:10.1016/j.semcancer.2015.02.006 · 9.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At present, treatment for Parkinson's disease (PD) is only symptomatic, therefore it is important to identify new targets tackling the molecular causes of the disease. We previously found that lymphoblasts from sporadic PD patients display increased activity of the cyclin D3/CDK6/pRb pathway and higher proliferation than control cells. These features were considered systemic manifestations of the disease, as aberrant activation of cell cycle is involved in neuronal apoptosis. The main goal of this work was to elucidate whether the inhibition of cyclin D3/CDK6-associated kinase activity could be useful in PD treatment. For this purpose, we investigated the effects of two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (NaB), and the m-TOR inhibitor rapamycin on cell viability and cyclin D3/CDK6 activity. Moreover, the potential neuroprotective action of these drugs was evaluated in 6-hydroxy-dopamine (6-OHDA) treated dopaminergic SH-SY5Y cells and primary rat mesencephalic cultures. Here we report that both compounds normalized the proliferative activity of PD lymphoblasts and reduced the 6-OHDA-induced cell death in neuronal cells by preventing the overactivation of the cyclin D3/CDK6/pRb cascade. Considering that these drugs are already used in clinics for treatment of other diseases with good tolerance, it is plausible that they may serve as novel therapeutic drugs for PD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 02/2015; DOI:10.1111/jnc.13070 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulated data indicate that self-renewal, multipotency, and differentiation of neural stem cells are under an intrinsic control mediated by alterations in the redox homeostasis. These dynamic redox changes not only reflect and support the ongoing metabolic and energetic processes, but also serve to coordinate redox-signaling cascades. Controlling particular redox couples seems to have a relevant impact on cell fate decision during development, adult neurogenesis and regeneration. Our own research provided initial evidence for the importance of NAD(+)-dependent enzymes in neural stem cell fate decision. In this review, we summarize recent knowledge on the active role of reactive oxygen species, redox couples and redox-signaling mechanisms on plasticity and function of neural stem and progenitor cells focusing on NAD(P)(+)/NAD(P)H-mediated processes. The compartmentalized subcellular sources and availability of oxidizing/reducing molecules in particular microenvironment define the specificity of redox regulation in modulating the delicate balance between stemness and differentiation of neural progenitors. The generalization of "reactive oxygen species" as well as the ambiguity of their origin might explain the diametrically-opposed findings in the field of redox-dependent cell fate reflected by the literature. Increasing knowledge of temporary and spatially defined redox regulation is of high relevance for the development of novel approaches in the field of cell-based regeneration of nervous tissue in various pathological states. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - General Subjects 02/2015; 97. DOI:10.1016/j.bbagen.2015.01.022 · 3.83 Impact Factor

Sohyun Ahn