Human Embryonic Stem Cell-Derived NK Cells Acquire Functional Receptors and Cytolytic Activity

Stem Cell Institute and Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
The Journal of Immunology (Impact Factor: 4.92). 11/2005; 175(8):5095-103. DOI: 10.4049/jimmunol.175.8.5095
Source: PubMed


Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.

Download full-text


Available from: Dan S Kaufman,
25 Reads
  • Source
    • "Since the derivation of hESCs, more than 20 years ago by Thomson et al., numerous groups have successfully differentiated these cells into fully mature and functional cells from each germ layer (105). Shortly, after the original derivation of hESCs, various groups demonstrated the hematopoietic development using an in vitro model and defined conditions (103, 104, 106–111). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells play an essential role in the fight against tumor development. Over the last years, the progress made in the NK-cell biology field and in deciphering how NK-cell function is regulated, is driving efforts to utilize NK-cell-based immunotherapy as a promising approach for the treatment of malignant diseases. Therapies involving NK cells may be accomplished by activating and expanding endogenous NK cells by means of cytokine treatment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic stem cell transplantation. NK cells that are suitable for adoptive cell therapy can be derived from different sources, including ex vivo expansion of autologous NK cells, unstimulated or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoietic progenitors from peripheral blood and umbilical cord blood, and NK-cell lines. Besides, genetically modified NK cells expressing chimeric antigen receptors or cytokines genes may also have a relevant future as therapeutic tools. Recently, it has been described the derivation of large numbers of functional and mature NK cells from pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, which adds another tool to the expanding NK-cell-based cancer immunotherapy arsenal.
    Frontiers in Immunology 09/2014; 5:439. DOI:10.3389/fimmu.2014.00439
  • Source
    • "Nevertheless, prolonged culture leads to NK cell exhaustion; that is, the resulting cells become ineffective in killing target cells and die within a few days after infusion into the recipient [2]. Therefore, in recent years there have been attempts to generate NK cells from more abundant cell sources, such as embryonic stem cell (ESC) and umbilical cord blood (UCB) [3]–[8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Efforts to develop peripheral blood-derived nature killer (NK) cells into therapeutic products have been hampered by these cells' low abundance and histoincompatibility. On the other hand, derivation of NK-like cells from more abundant cell sources such as embryonic stem cells (ESCs) and umbilical cord blood (UCB) requires the selection of rare CD34+ cells. Thus, we sought to convert adipose-derived stem cells (ADSCs), which are abundant and natively CD34+, into NK-like cells. When grown in hematopoietic induction medium, ADSCs formed sphere clusters and expressed hematopoietic markers CD34, CD45, and KDR. Further induction in NK cell-specific medium resulted in a population of cells that expressed NK cell marker CD56, and thus termed ADSC-NK. Alternatively, the hematopoietically induced ADSCs were transduced with NK cell-specific transcription factor E4BP4 prior to induction in NK cell-specific medium. This latter population of cells, termed ADSC-NKE, expressed CD56 and additional NK cell markers such as CD16, CD94, CD158, CD314, FasL, and NKp46. ADSC-NKE was as potent as NK leukemia cell NKL in killing breast cancer cell MCF7 and prostate cancer cells DU145, PC3, LnCap, DuPro, C4-2 and CWR22, but exhibited no killing activity toward normal endothelial and smooth muscle cells. In nude mice test ADSC-NKE was able to significantly delay the progression of tumors formed by MCF7 and PC3. When injected into immunocompetent rats, ADSC-NKE was detectable in bone marrow and spleen for at least 5 weeks. Together, these results suggest that ADSCs can be converted into NK-like cells with anti-tumor activities.
    PLoS ONE 08/2014; 9(8):e106246. DOI:10.1371/journal.pone.0106246 · 3.23 Impact Factor
  • Source
    • "In 2005, Woll and colleagues used a two-step process to differentiate human ES cells into NK cells in vitro. These cells had the ability to lyse human tumor cells deficient in MHC class I expression and up-regulate cytokine production (82). Subsequently, NK cells were successfully differentiated from human iPS cells, using a similar two-stage culture system (83), the cells obtained representing a pure population that did not require cell sorting or co-culture with xenogeneic stromal cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8(+) T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141(+)XCR1(+) DC, capable of cross presenting TAA to naïve CD8(+) T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
    Frontiers in Immunology 04/2014; 5:176. DOI:10.3389/fimmu.2014.00176
Show more