Article

Identification and analysis of multivalent proteolytically resistant peptides from gluten: Implications for Celiac Sprue

University of Oslo, Kristiania (historical), Oslo, Norway
Journal of Proteome Research (Impact Factor: 5). 08/2005; 4(5):1732-41. DOI: 10.1021/pr050173t
Source: PubMed

ABSTRACT Dietary gluten proteins from wheat, rye, and barley are the primary triggers for the immuno-pathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably alpha- and gamma-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from alpha-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here, we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of alpha-2 gliadin confirmed that the DQ2 restricted T cell response to the alpha-2 gliadin are directed toward the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative gamma-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome.

Download full-text

Full-text

Available from: Øyvind Molberg, Jun 29, 2015
0 Followers
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Celiac sprue is an inflammatory disease of the small intestine caused by dietary gluten and treated by adherence to a life-long gluten-free diet. The recent identification of immunodominant gluten peptides, the discovery of their cogent properties, and the elucidation of the mechanisms by which they engender immunopathology in genetically susceptible individuals have advanced our understanding of the molecular pathogenesis of this complex disease, enabling the rational design of new therapeutic strategies. The most clinically advanced of these is oral enzyme therapy, in which enzymes capable of proteolyzing gluten (i.e., glutenases) are delivered to the alimentary tract of a celiac sprue patient to detoxify ingested gluten in situ. In this chapter, we discuss the key challenges for discovery and preclinical development of oral enzyme therapies for celiac sprue. Methods for lead identification, assay development, gram-scale production and formulation, and lead optimization for next-generation proteases are described and critically assessed.
    Methods in enzymology 01/2012; 502:241-71. DOI:10.1016/B978-0-12-416039-2.00013-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Celiac disease is a T-cell mediated immune response in the small intestine of genetically susceptible individuals caused by ingested gluten proteins from wheat, rye, and barley. In the allohexaploid bread wheat (Triticum aestivum), gluten proteins are encoded by multigene loci present on the homoeologous chromosomes 1 and 6 of the three homoeologous genomes A, B, and D. The effect of deleting individual gluten loci was analyzed in a set of deletion lines of T. aestivum cv. Chinese Spring with regard to the level of T-cell stimulatory epitopes (Glia-α9 and Glia-α20) and to technological properties of the dough including mixing, stress relaxation, and extensibility.Deletion of loci encoding ω-gliadins, γ-gliadins, and LMW-glutenins located on the short arm of chromosome 1D, reduced the number of T-cell stimulatory epitopes and caused minor deterioration of dough quality by increase of elasticity. Deletion of loci encoding α-gliadins located on the short arm of chromosome 6D, resulted in a significant decrease in T-cell stimulatory epitopes. In parallel, the dough became more stiff and less elastic, which is an improvement for ‘Chinese Spring’ dough.We demonstrated that α-gliadins from wheat can largely be compensated by addition of avenins from oat to the flour to meet technological requirements.
    Journal of Cereal Science 03/2011; 53(2):206-216. DOI:10.1016/j.jcs.2010.12.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Celiac disease is a permanent intolerance to the gliadin fraction of wheat gluten and to similar barley and rye proteins that occurs in genetically susceptible subjects. After ingestion, degraded gluten proteins reach the small intestine and trigger an inappropriate T cell-mediated immune response, which can result in intestinal mucosal inflammation and extraintestinal manifestations. To date, no pharmacological treatment is available to gluten-intolerant patients, and a strict, life-long gluten-free diet is the only safe and efficient treatment available. Inevitably, this may produce considerable psychological, emotional, and economic stress. Therefore, the scientific community is very interested in establishing alternative or adjunctive treatments. Attractive and novel forms of therapy include strategies to eliminate detrimental gluten peptides from the celiac diet so that the immunogenic effect of the gluten epitopes can be neutralized, as well as strategies to block the gluten-induced inflammatory response. In the present paper, we review recent developments in the use of enzymes as additives or as processing aids in the food biotechnology industry to detoxify gluten.
    10/2010; 2010:174354. DOI:10.4061/2010/174354