Article

Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice

Department of Neurology, University of Münster, 48149 Münster, Germany.
Journal of Neuroinflammation (Impact Factor: 4.9). 10/2005; 2:22. DOI: 10.1186/1742-2094-2-22
Source: PubMed

ABSTRACT Inflammation is suspected to contribute to the progression and severity of neurodegeneration in Alzheimer's disease (AD). Transgenic mice overexpressing the london mutant of amyloid precursor protein, APP [V717I], robustly recapitulate the amyloid pathology of AD.
Early and late, temporal and spatial characteristics of inflammation were studied in APP [V717I] mice at 3 and 16 month of age. Glial activation and expression of inflammatory markers were determined by immunohistochemistry and RT-PCR. Amyloid deposition was assessed by immunohistochemistry, thioflavine S staining and western blot experiments. BACE1 activity was detected in brain lysates and in situ using the BACE1 activity kit from R&D Systems, Wiesbaden, Germany.
Foci of activated micro- and astroglia were already detected at age 3 months, before any amyloid deposition. Inflammation parameters comprised increased mRNA levels coding for interleukin-1beta, interleukin-6, major histocompatibility complex II and macrophage-colony-stimulating-factor-receptor. Foci of CD11b-positive microglia expressed these cytokines and were neighbored by activated astrocytes. Remarkably, beta-secretase (BACE1) mRNA, neuronal BACE1 protein at sites of focal inflammation and total BACE1 enzyme activity were increased in 3 month old APP transgenic mice, relative to age-matched non-transgenic mice. In aged APP transgenic mice, the mRNA of all inflammatory markers analysed was increased, accompanied by astroglial iNOS expression and NO-dependent peroxynitrite release, and with glial activation near almost all diffuse and senile Abeta deposits.
The early and focal glial activation, in conjunction with upregulated BACE1 mRNA, protein and activity in the presence of its substrate APP, is proposed to represent the earliest sites of amyloid deposition, likely evolving into amyloid plaques.

0 Followers
 · 
326 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological studies suggest that neuroinflammation is exacerbated by increased beta-amyloid (Aβ) levels in the brain early in Alzheimer's disease (AD). The time course and relationships between astrocytosis and Aβ deposition were examined using multitracer in vivo positron emission tomography (PET) imaging in an AD transgenic mouse model, followed by postmortem autoradiography and immunohistochemistry analysis. PET imaging with the amyloid plaque tracer (11)C-AZD2184 and the astroglial tracer (11)C-deuterium-L-deprenyl ((11)C-DED) was carried out in APPswe mice aged 6, 8-15 and 18-24 months (4-6 animals/group) and in wild-type (wt) mice aged 8-15 and 18-24 months (3-6 animals/group). Tracer uptake was quantified by region of interest analysis using PMOD software and a 3-D digital mouse brain atlas. Postmortem brain tissues from the same APPswe and wt mice in all age groups were analysed for Aβ deposition and astrocytosis by in vitro autoradiography using (3)H-AZD2184, (3)H-Pittsburgh compound B (PIB) and (3)H-L-deprenyl and immunostaining performed with antibodies for Aβ42 and glial fibrillary acidic protein (GFAP) in sagittal brain sections. (11)C-AZD2184 PET retention in the cerebral cortices of APPswe mice was significantly higher at 18-24 months than in age-matched wt mice. Cortical and hippocampal (11)C-DED PET binding was significantly higher at 6 months than at 8-15 months or 18-24 months in APPswe mice, and it was also higher than at 8-15 months in wt mice. In vitro autoradiography (3)H-AZD2184 and (3)H-PIB binding confirmed the in vivo findings with (11)C-AZD2184 and demonstrated age-dependent increases in Aβ deposition in APPswe cortex and hippocampus. There were no significant differences between APPswe and wt mice in (3)H-L-deprenyl autoradiography binding across age groups. Immunohistochemical quantification demonstrated more Aβ42 deposits in the cortex and hippocampus and more GFAP(+) reactive astrocytes in the hippocampus at 18-24 months than at 6 months in APPswe mice. The findings provide further in vivo evidence that astrocytosis occurs early in AD, preceding Aβ plaque deposition.
    European Journal of Nuclear Medicine 04/2015; 42(7). DOI:10.1007/s00259-015-3047-0 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The old age population is increasing worldwide as well as age related diseases, including neurodegenerative disorders such as Alzheimer's disease (AD), which negatively impacts on the health care systems. Aging represents per se a risk factor for AD. Thus, the study and identification of pathways within the biology of aging represent an important end point for the development of novel and effective disease-modifying drugs to treat, delay, or prevent AD. Cellular senescence and telomere shortening represent suitable and promising targets. Several studies show that cellular senescence is tightly interconnected to aging and AD, while the role of telomere dynamic and stability in AD pathogenesis is still unclear. This review will focus on the linking mechanisms between cellular senescence, telomere shortening and AD. Copyright © 2015. Published by Elsevier B.V.
    Ageing Research Reviews 04/2015; 22. DOI:10.1016/j.arr.2015.04.003 · 7.63 Impact Factor
  • Source
    Alzheimer's and Dementia 07/2013; 9(4):P28. DOI:10.1016/j.jalz.2013.05.039 · 17.47 Impact Factor

Full-text (4 Sources)

Download
30 Downloads
Available from
May 31, 2014