Article

Diesel effects on human health: a question of stress?

Department of Medicine, University of California, Los Angeles, Los Ángeles, California, United States
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 12/2005; 289(5):L722-3. DOI: 10.1152/ajplung.00217.2005
Source: PubMed
0 Followers
 · 
44 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this pilot study was to evaluate perspectives of the assessment of nonspecific biological effects of airborne particulate matter including nanoparticles using appropriate immunological assays. We have selected various in vitro immunological assays to establish an array allowing us to monitor activation of the cell-mediated and humoral response of both the innate and adaptive immunity. To assess comprehensive interactions and effects, the assays were performed in whole blood cultures from healthy volunteers and we used an original airborne particle mixture from high pollution period in Ostrava region representing areas with one of the most polluted air in Europe. Even if certain effects were observed, the results of the immunological assays did not prove significant effects of airborne particles on immune cells' functions of healthy persons. However, obtained data do not exclude health risks of long-term exposure to airborne particles, especially in case of individuals with genetic predisposition to certain diseases or already existing disease. This study emphasizes the in vitro assessment of complex effects of airborne particles in conditions similar to actual ones in an organism exposed to particle mixture present in the polluted air.
    Journal of Physics Conference Series 04/2013; 429(1):2032-. DOI:10.1088/1742-6596/429/1/012032
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence is compelling for a positive correlation between climate change, urbanisation and prevalence of allergic sensitisation and diseases. The reason for this association is not clear to date. Some data point to a pro-allergenic effect of anthropogenic factors on susceptible individuals. To evaluate the impact of urbanisation and climate change on pollen allergenicity. Catkins were sampled from birch trees from different sites across the greater area of Munich, pollen were isolated and an urbanisation index, NO2 and ozone exposure were determined. To estimate pollen allergenicity, allergen content and pollen-associated lipid mediators were measured in aqueous pollen extracts. Immune stimulatory and modulatory capacity of pollen was assessed by neutrophil migration assays and the potential of pollen to inhibit dendritic cell interleukin-12 response. In vivo allergenicity was assessed by skin prick tests. The study revealed ozone as a prominent environmental factor influencing the allergenicity of birch pollen. Enhanced allergenicity, as assessed in skin prick tests, was mirrored by enhanced allergen content. Beyond that, ozone induced changes in lipid composition and chemotactic and immune modulatory potential of the pollen. Higher ozone-exposed pollen was characterised by less immune modulatory but higher immune stimulatory potential. It is likely that future climate change along with increasing urbanisation will lead to rising ozone concentrations in the next decades. Our study indicates that ozone is a crucial factor leading to clinically relevant enhanced allergenicity of birch pollen. Thus, with increasing temperatures and increasing ozone levels, also symptoms of pollen allergic patients may increase further.
    PLoS ONE 11/2013; 8(11):e80147. DOI:10.1371/journal.pone.0080147 · 3.53 Impact Factor
  • Source