Regional vegetation die-off in response to global-change-type drought

School of Natural Resources, Institute for the Study of Planet Earth, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0043, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2005; 102(42):15144-8. DOI: 10.1073/pnas.0505734102
Source: PubMed

ABSTRACT Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although plants have moved across the landscape in response to changing climate for millennia, projections of contemporary climate change suggest that forest tree species and populations will need to migrate faster than their natural ability. Therefore, climate change adaptation strategies, such as assisted migration, have gained attention since 2007. Effective implementation of assisted migration can only occur if target transfer guidelines are developed because our current seed transfer guidelines, established to guide the movement of plant materials, lack inherent spatial and temporal dynamics associated with climate change. This limitation restrains reforestation practitioners from making decisions about assisted migration. Lack of operating procedures, uncertainties about future climate conditions, risks associated with moving plants outside their current ranges, and existing policies have hampered formal actions in forest management and conservation. We review the current thinking on assisted migration of forest tree species and provide information that could facilitate implementation.
    Journal of Forestry -Washington- 07/2013; 111(4):287-297. DOI:10.5849/jof.13-016 · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Les activités humaines modifient directement les écosystèmes par les différents usages des sols et l’exploitation des ressources naturelles, et indirectement par la modification des paramètres atmosphériques et climatiques. On prévoit une poursuite du réchauffement climatique entre 1.8 et 3.4°C et une augmentation de la population mondiale jusqu’à 10 milliards d’ici la fin du XXIème siècle. Ces changements globaux modifient et modifieront l’ensemble des caractéristiques des écosystèmes forestiers. Dans le contexte des changements climatiques, on s’attend à observer des changements dans la productivité des forêts et la croissance des arbres, les aires de répartition et les habitats favorables aux communautés forestières, le dépérissement dû a la sécheresse, les perturbations biotiques et abiotiques. De plus, ces effets attendus du climat interviennent sur des écosystèmes forestiers largement modifiés par les activités humaines : elles représenteraient environ les deux tiers du couvert forestier mondial. Les activités humaines ont une influence majeure sur l’étendue et la densité du couvert forestier, la structure et la composition des forêts. Les objectifs de ce travail de synthèse sont de (1) faire une revue des processus concernés, et (2) identifier et hiérarchiser les principales dynamiques des écosystèmes forestiers dans les prochaines décennies. Plusieurs éléments de conclusion ressortent de cette synthèse : (1) Les usages des sols ont généralement une influence de premier plan sur les écosystèmes forestiers. (2) Les changements dans les régimes de perturbations pourraient aussi rapidement et profondément bouleverser les écosystèmes forestiers. (3) Inversement, les changements de répartition dues aux changements climatiques interviennent sur le plus long terme et semblent jouer un rôle plus secondaire dans la transformation des paysages. (4) Il reste de grandes incertitudes dans les prévisions. (5) Les différents domaines ne sont pas également documentés. (6) Il existe un grand manque de connaissance dans de nombreuses régions du monde. (7) Différents types de réponses visant à réduire les conséquences des changements globaux ont été développées: conservation et restauration face aux effets des usages des sols, adaptation et mitigation face aux effets des changements climatiques.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amplified ‘‘greenhouse effect’’ associated with increasing concentrations of greenhouse gases has increased atmospheric temperature by 18C since industrialization (around 1750), and it is anticipated to cause an additional 28C increase by midcentury. Increased biospheric warming is also projected to modify the amount and distribution of annual precipitation and increase the occurrence of both drought and heat waves. The ecological consequences of climate change will vary substantially among ecoregions because of regional differences in antecedent environmental conditions; the rate and magnitude of change in the primary climate change drivers, including elevated carbon dioxide (CO2), warming and precipitation modification; and nonadditive effects among climate drivers. Elevated atmospheric CO2 will directly stimulate plant growth and reduce negative effects of drying in a warmer climate by increasing plant water use efficiency; however, the CO2 effect is mediated by environmental conditions, especially soil water availability. Warming and drying are anticipated to reduce soil water availability, net primary productivity, and other ecosystem processes in the southern Great Plains, the Southwest, and northern Mexico, but warmer and generally wetter conditions will likely enhance these processes in the northern Plains and southern Canada. The Northwest will warm considerably, but annual precipitation is projected to change little despite a large decrease in summer precipitation. Reduced winter snowpack and earlier snowmelt will affect hydrology and riparian systems in the Northwest. Specific consequences of climate change will be numerous and varied and include modifications to forage quantity and quality and livestock production systems, soil C content, fire regimes, livestock metabolism, and plant community composition and species distributions, including range contraction and expansion of invasive species. Recent trends and model projections indicate continued directional change and increasing variability in climate that will substantially affect the provision of ecosystem services on North American rangelands.
    Rangeland Ecology & Management 09/2013; 66(5):493-511. DOI:10.2111/REM-D-12-00068.1 · 1.73 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014