New, simple and validated UV-spectrophotometric methods for the estimation of gatifloxacin in bulk and formulations.

Pharmacy Group, Faculty Division III, Birla Institute of Technology and Science, Vidya Vihar, Pilani 333031, Rajasthan, India.
Il Farmaco 01/2005; 60(11-12):906-12. DOI: 10.1016/j.farmac.2005.08.010
Source: PubMed

ABSTRACT New, simple and cost effective UV-spectrophotometric methods were developed for the estimation of gatifloxacin in bulk and pharmaceutical formulations. Gatifloxacin was estimated at 286 nm in 100 mM phosphate buffer (pH 7.4) and 292 nm in 100 mM hydrochloric acid (pH 1.2). Linearity range was found to be 1-18 mug ml(-1) (regression equation: absorbance=0.0684 x Concentration in microg ml(-1) + 0.0050; r2 = 0.9998) in the phosphate buffer (pH 7.4) and 1-14 microg ml(-1) (regression equation: absorbance = 0.0864 x Concentration in microg ml(-1) + 0.0027; r2 = 0.9999) in hydrochloric acid medium (pH 1.2). The apparent molar absorptivity was found to be 2.62 x 10(4) l mol(-1) cm(-1) in the phosphate buffer and 3.25 x 10(4) l mol(-1) cm(-1) in hydrochloric acid media. In both the proposed methods sandell's sensitivity was found to be about 0.01 microg cm(-2)/0.001A. These methods were tested and validated for various parameters according to ICH guidelines and USP. The quantitation limits were found to be 0.312 and 0.3 microg ml(-1) in the phosphate buffer and hydrochloric acid medium, respectively. The proposed methods were successfully applied for the determination of gatifloxacin in pharmaceutical formulations (tablets, injection and ophthalmic solution). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2%), while being simple, cheap and less time consuming and can be suitably applied for the estimation of gatifloxacin in different dosage forms and dissolution studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A fast, sensitive, and accurate stability indicating reverse phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for simultaneous determination of gatifloxacin and ketorolac tromethamine in combined dosage form. Chromatographic separations were achieved on BDS Hypersil C8 column (250 × 4.6 mm) with mobile phase that consisted of methanol and phosphate buffer (pH 3.0) in the ratio of (55:45 v/v) at a flow rate of 1.5 m Lmin. The analytes were detected at 270 nm using ultraviolet detection. The retention times of gatifloxacin and ketorolac tromethamine were found to be 2.460 and 6.366 min, respectively. When forced degradation studies were applied to both the drugs in combination, it was found that both gatifloxacin and ketorolac tromethamine were very stable under the basic, acidic, wet heat and oxidative environment. The method was linear in the concentration range of 30–90 µg mL for gatifloxacin and 50–110 µg mL for ketorolac tromethamine. The correlation coefficients were found to be 0.9998 and 0.9999 for gatifloxacin and ketorolac tromethamine, respectively. The method resulted in good separation of both the analytes with acceptable tailing and resolution. The developed method can be used for routine determination of gatifloxacin and ketorolac tromethamine in commercial formulations.
    Journal of Liquid Chromatography &amp Related Technologies 03/2012; 35(4):651-661. · 0.57 Impact Factor
  • Analytical Biochemistry 09/2010; 404(1):1-7. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The morphology of gelatin nanoparticles loaded with three different drugs (Tizanidine hydrochloride, Gatifloxacin and Fluconazole) and their characteristics of entrapment and release from gelatin nanoparticles were investigated by the analysis on nanoparticle size distribution, SEM and FT-IR in this study. The particles were prepared by nanoprecipitation using water and ethanol as a solvent and a nonsolvent, respectively. The exclusion of a crosslinking agent from the procedure led the system to have an irregularly-shaped morphology. Nonetheless, the uncrosslinked case of Gatifloxacin loading generally led to a more homogeneous population of nanoparticles than the uncrosslinked case of Tizanidine hydrochloride loading. No loading was achieved in the case of Fluconazole, whereas both Tizanidine hydrochloride and Gatifloxacin are observed of being capable of being loaded by nanoprecipitation. Tizanidine hydrochloride-loaded, blank and Gatifloxacin-loaded nanoparticles yielded, under crosslinked condition, 59.3, 23.1 and 10.6% of the used dried mass. The crosslinked Tizanidine hydrochloride-loaded particles showed the loading efficiency of 13.8%, which was decreased to 1.1% without crosslinking. A crosslinker such as glutaraldehyde is indispensable to enhance the Tizanidine hydrochloride-loading efficiency. To the contrary, the Gatifloxacin-loading efficiency for crosslinked ones was lower by a factor of 2-3 times than that for uncrosslinked ones. This is due to the carboxylic groups of Gatifloxacin and the aldehyde groups of glutaraldehyde competing with each other during the crosslinking process, to react with the amino groups of gelatin molecules. The loading efficiency of gelatin nanoparticles reported by other investigators greatly varies. Nevertheless, the loading efficiency reported by us is in good agreement with the drug-loading data of gelatin nanoparticles reported by other investigators. The 80% of loaded Tizanidine hydrochloride was released around 15 h after start-up of the release experiment, while the 20% of loaded Gatifloxacin was released more rapidly, as free Gatifloxacin, than the loaded Tizanidine hydrochloride and it showed the trend of sustained slow release during the remaining period of its release experiment. Furthermore, the result of comparative FT-IR analysis is consistent to that of the corresponding drug release study.
    Bioprocess and Biosystems Engineering 09/2011; 35(1-2):297-307. · 1.87 Impact Factor