Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J

Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
The FASEB Journal (Impact Factor: 5.04). 01/2006; 19(14):2042-4. DOI: 10.1096/fj.05-3740fje
Source: PubMed


Epidemiological studies suggest that increased intake of fruits and vegetables may be associated with a reduced risk of prostate cancer. Apigenin (4', 5, 7,-trihydroxyflavone), a common dietary flavonoid abundantly present in fruits and vegetables, has shown remarkable anti-proliferative effects against various malignant cell lines. However, the mechanisms underlying these effects remain to be elucidated. We investigated the in vivo growth inhibitory effects of apigenin on androgen-sensitive human prostate carcinoma 22Rv1 tumor xenograft subcutaneously implanted in athymic male nude mice. Apigenin was administered to mice by gavage at doses of 20 and 50 mug/mouse/day in 0.2 ml of a vehicle containing 0.5% methyl cellulose and 0.025% Tween 20 in two different protocols. In the first protocol, apigenin was administered for 2 wk before inoculation of tumor and was continued for 8 wk, resulting in significant inhibition of tumor volume by 44 and 59% (P<0.002 and 0.0001), and wet weight of tumor by 41 and 53% (P<0.05), respectively. In the second protocol, administration of apigenin began 2 wk after tumor inoculation and continued for 8 wk; tumor volume and wet weights of tumor were reduced by 39 and 53% (P<0.01 and 0.002) and 31 and 42% (P<0.05), respectively. The tumor inhibitory effect of apigenin was more pronounced in the first protocol of extended treatment, which was associated with increased accumulation of human IGFBP-3 in mouse serum along with significant increase in IGFBP-3 mRNA and protein expression in tumor xenograft. Apigenin intake by these mice also resulted in simultaneous decrease in serum IGF-I levels and induction of apoptosis in tumor xenograft. Importantly, tumor growth inhibition, induction of apoptosis, and accumulation of IGFBP-3 correlated with increasing serum and tumor apigenin levels. In both studies, animals did not exhibit any signs of toxicity or reduced food consumption. In cell culture studies, apigenin treatment resulted in cell growth inhibition and induction of apoptosis, which correlated with increased accumulation of IGFBP-3 in culture medium and cell lysate. These effects were associated with significant reduction in IGF-I secretion; inhibition of IGF-I-induced cell cycle progression and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, along with an increase in sub-G1 peak by apigenin. Further, treatment of cells with IGFBP-3 antisense oligonucleotide reversed these effects and attenuated apigenin-mediated inhibition of IRS-1 phosphorylation conferring inhibitory effects of apigenin on IGF-signaling. This study presents the first evidence that the in vitro and in vivo growth inhibitory effects of apigenin involve modulation of IGF-axis signaling in prostate cancer.

Download full-text


Available from: Sanjay Gupta, Oct 04, 2015
10 Reads
  • Source
    • "Apigenin (4′,5,7-trihydroxyflavone) is a natural dietary flavonoid (Patel et al., 2007), which is widely contained in many fruits and vegetables such as orange, grapefruit, celery, onion, and wheat sprouts (Patel et al., 2007). Anticancer effects of apigenin has been shown on different types of cancers including breast (Choi and Kim, 2009), prostate (Shukla et al., 2005), lung (Li et al., 2007), and hematologic (Budhraja et al., 2012). Studies have revealed that apigenin inhibits pancreatic cancer cell growth in vitro by induction of cell cycle arrest (Ujiki et al., 2006) and induces apoptosis through different cellular signaling transduction pathways including nuclear factor κB (NF-κB) (Helbig et al., 2003), p53 (Zheng et al., 2005), and PI3K/Akt (Way et al., 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4', 5, 7-trihydroxyflavone), a natural dietary flavonoid, suppressed CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other type of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis.
    Toxicology and Applied Pharmacology 06/2013; 272(1). DOI:10.1016/j.taap.2013.05.028 · 3.71 Impact Factor
  • Source
    • "Because the in vitro findings in this epithelial cancer model were so promising, we then examined the effects of apigenin treatment in a mouse model. Apigenin has been shown to have growth-inhibitory effects associated with cell-cycle regulation in nude mice bearing prostate cancer tumors [30,31]. In our current study, treatment with apigenin resulted in significant inhibition of proteasomal chymotrypsin-like activity, accumulation of proteasome target proteins (that is, Bax), and induction of apoptosis in tumors (Figure 3). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteasome inhibition is an attractive approach to anticancer therapy and may have relevancy in breast cancer treatment. Natural products, such as dietary flavonoids, have been suggested as natural proteasome inhibitors with potential use for cancer prevention and therapeutics. We previously reported that apigenin, a flavonoid widely distributed in many fruits and vegetables, can inhibit proteasome activity and can induce apoptosis in cultured leukemia Jurkat T cells. Whether apigenin has proteasome-inhibitory activity in the highly metastatic human breast MDA-MB-231 cells and xenografts,however, is unknown. MDA-MB-231 breast cancer cell cultures and xenografts were treated with apigenin, followed by measurement of reduced cellular viability/proliferation,proteasome inhibition, and apoptosis induction. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity, by ubiquitinated proteins, and by accumulation of proteasome target proteins in extracts of the treated cells or tumors. Apoptotic cell death was measured by caspase-3/caspase-7 activation, poly(ADP-ribose) polymerase cleavage, and immunohistochemistry for terminal nucleotidyltransferase-mediated nick end labeling positivity. We report for the first time that apigenin inhibits the proteasomal chymotrypsin-like activity and induces apoptosis not only in cultured MDA-MB-231 cells but also in MDA-MB-231 xenografts. Furthermore, while apigenin has antibreast tumor activity, no apparent toxicity to the tested animals was observed. We have shown that apigenin is an effective proteasome inhibitor in cultured breast cancer cells and in breast cancer xenografts. Furthermore, apigenin induces apoptotic cell death in human breast cancer cells and exhibits anticancer activities in tumors. The results suggest its potential benefits in breast cancer prevention and treatment.
    Breast cancer research: BCR 02/2007; 9(6):R80. DOI:10.1186/bcr1795 · 5.49 Impact Factor
  • Source
    • "It is possible that lower in vivo concentrations of apigenin mimic effects observed at much higher concentrations in vitro. For example, whereas 10– 40 mM apigenin inhibited TNFa-induced NF-kB activation and induction of apoptosis in PC-3 prostate carcinoma cells in vitro [74], a serum apigenin level of 1.26 mM (used by the same group of investigators in nude mice after 50 mg/mouse/day apigenin treatment) resulted in increased tumor uptake of apigenin with growth inhibition and apoptosis induction in xenograft tumor [73]. Limited bioavailability of apigenin in pure form is a major drawback, and further studies are needed to increase the efficacy of apigenin in in vivo studies [75]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The physiological effects of the flavone, apigenin on bone cells were studied. We first show that apigenin inhibits tumor necrosis factor alpha (TNFalpha)- and interferon gamma (IFNgamma)-induced secretion of several osteoclastogenic cytokines from MC3T3-E1 mouse calvarial osteoblast cell line. Ligands of the TNF receptor family constitute the most potent osteoclastic cytokines. In MC3T3-E1 cells, apigenin dose-dependently (from 5 to 20 microM) inhibits TNFalpha-induced production of the osteoclastogenic cytokines, IL-6 (interleukin-6), RANTES (regulated upon activation, normal T cell-expressed and -secreted), monocyte chemoattractant protein-1 (MCP-1) and MCP-3. In addition, apigenin inhibits IFNgamma-stimulated secretion of monokines, CXCL-9, and -10 in MC3T3-E1 cells. Next, we show that apigenin strongly inhibits differentiation of 3T3-L1 preadipocytes to adipocytes with attendant inhibition of adipocyte differentiation-induced IL-6, MCP-1, and leptin production. Inhibition of adipogenic differentiation by apigenin could be due to induction of osteogensis as it robustly upregulates mRNA levels of bone morphogenetic protein-6 (BMP-6). Finally, the presence of apigenin inhibited osteoclast differentiation from the RAW 264.7 cell line by reducing receptor activator of nuclear factor kappa ligand (RANKL)-induced expression of tartrate-resistant acid phosphatase (TRAP), RANK, and calcitonin receptor but not CCR1, resulting in the inhibition of multinucleated osteoclast formation. Similarly, apigenin inhibited expression of the osteoclast differentiation markers TRAP, RANK, and c-Fms in osteoclast precursor cells obtained from mouse bone marrow following treatment with RANKL and macrophage colony stimulating factor (MCSF). Furthermore, apigenin induced apoptosis of mature osteoclasts obtained from rabbit long bone and inhibited bone resorption. In all instances, a structurally related compound, flavone had no significant effect. These data suggest that apigenin has multiple effects on all three bone cells that could prevent bone loss in vivo.
    Biochemical Pharmacology 08/2006; 72(2):184-97. DOI:10.1016/j.bcp.2006.04.018 · 5.01 Impact Factor
Show more