Isopropanolic extract of black cohosh stimulates osteoprotegerin production by human osteoblasts.

Department of Obstetrics and Gynecology, Georg-August-University of Göttingen, Göttingen, Germany.
Journal of Bone and Mineral Research (Impact Factor: 6.13). 11/2005; 20(11):2036-43. DOI: 10.1359/JBMR.050716
Source: PubMed

ABSTRACT An isopropanolic extract (iCR) from the rhizomes of Cimicifuga racemosa (black cohosh) is used an alternative in the treatment of menopausal symptoms, and animal studies suggest positive skeletal effects. iCR stimulated osteoblastic OPG protein secretion by 3- to 5-fold as early as 12 h without affecting RANKL expression. The iCR effect, abrogated by the pure estrogen receptor antagonist ICI 182,780, also enhanced ALP activity (4-fold) and osteocalcin expression (3-fold), possibly contributing to the skeletal effects of black cohosh.
Despite its positive effects on the skeleton, estrogen replacement therapy is no longer recommended as first-line therapy for the prevention and treatment of postmenopausal osteoporosis because it increases cardiovascular, thromboembolic, and breast cancer risk. Recently, herbal therapeutics such as an isopropanolic extract (iCR) from the rhizomes of Cimicifuga (=Actaea) racemosa (black cohosh) are gaining interest as an alternative in the treatment of menopausal symptoms. Whereas animal studies in rats suggest positive skeletal effects, the mechanism of its actions on bone cells remain unclear. RANKL is essential for osteoclast formation and activation, while osteoprotegerin (OPG) neutralizes RANKL.
In this study, we assessed the effects of iCR on OPG and RANKL mRNA steady-state levels by semiquantitative RT-PCR and on protein production by an ELISA system in human osteoblasts (hOBs).
Under serum-free conditions, treatment with iCR increased OPG mRNA levels and protein secretion of hOBs by 2- to 3-fold in a dose-dependent manner, with a maximum effect at a 10(6)-fold dilution of iCR (p < 0.001) after 24-48 h. Time-course experiments indicated a stimulatory effect of iCR on osteoblastic OPG protein secretion by 3- to 5-fold (p < 0.001) as early as 12 h, whereas RANKL expression was very low and was not found to be modulated by iCR. Of note, the stimulatory effect of iCR on OPG production was abrogated by the pure estrogen receptor antagonist ICI 182,780. Moreover, iCR enhanced two osteoblastic differentiation markers, bone-specific alkaline phosphatase activity and osteocalcin expression, by up to 4- and 3-fold, respectively (p < 0.001).
Our data suggest that iCR enhances differentiation and increases the OPG-to-RANKL ratio of normal human osteoblasts. These effects may contribute to the positive skeletal effects of black cohosh.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aceaea racemosa (formerly Cimicifuga racemosa, black cohosh, AR) extracts have been widely used as an alternative to hormonal replacement therapy for menopausal symptoms. Recent evidences suggest AR extracts are also effective in protecting against postmenopausal bone loss. To determine whether AR has any direct anabolic effect on osteoblasts, we investigated the ethanolic extract of AR on bone nodule formation in mouse MC3T3-E1 preosteoblast cells. AR did not stimulate osteoblast proliferation. Rather, at high doses of 1000 ng/mL for 48 h, AR suppressed (7.2+/-0.9% vs. control) osteoblast proliferation. At 500 ng/mL, a significant increase in bone nodule formation was seen with Von Kossa staining. Using quantitative PCR analysis, AR was shown to enhance the gene expression of runx2 and osteocalcin. Co-treatment with ICI 182,780, the selective estrogen receptor antagonist, abolished the stimulatory effect of AR on runx2 and osteocalcin gene induction, as well as on bone nodule formation in MC3T3-E1 cells. This is a first report of the direct effect of AR on enhancement of bone nodule formation in osteoblasts, and this action was mediated via an estrogen receptor-dependent mechanism. The results provide a scientific rationale at the molecular level for the claim that AR can offer effective prevention of postmenopausal bone loss.
    Bone 06/2008; 43(3):567-73. · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen regulates various cytokines and growth factors in estrogen receptor (ER)-positive human breast cancer. Receptor activator of NF-kappaB ligand (RANKL) is an essential cytokine for osteoclasts, whereas osteoprotegerin (OPG) is a soluble inhibitor for RANKL. We analyzed the regulation of the RANKL/OPG system by estrogens and androgens in the ER-positive breast cancer cell line MCF-7 and the ER-negative breast cancer cell line MDA-MB-231. In MCF-7 cells, which predominantly express ER-alpha, 17beta-estradiol and testosterone dose-dependently decreased OPG mRNA levels and protein secretion by 70 and 65%, respectively (p<0.0001 by ANOVA). The inhibition of OPG production by 17beta-estradiol and testosterone was specifically prevented by the pure anti-estrogen ICI 182,780, and the testosterone effect was prevented by an aromatase inhibitor. In conclusion, 17beta-estradiol suppressed OPG production by human breast cancer cell lines in a dose-dependent and specific manner, indicating that the RANKL/OPG cytokine system is an estrogen-responsive target in breast cancer.
    Biochemical and Biophysical Research Communications 04/2008; 368(3):736-41. · 2.28 Impact Factor
  • Source
    International Journal of Agronomy and Plant Production. 01/2013; 4(7):1590-1601.

Full-text (2 Sources)

Available from
Sep 25, 2014