Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice.

Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA.
Nature Neuroscience (Impact Factor: 14.98). 12/2005; 8(11):1586-94. DOI: 10.1038/nn1562
Source: PubMed

ABSTRACT Microdeletions of 22q11.2 represent one of the highest known genetic risk factors for schizophrenia. It is likely that more than one gene contributes to the marked risk associated with this locus. Two of the candidate risk genes encode the enzymes proline dehydrogenase (PRODH) and catechol-O-methyltransferase (COMT), which modulate the levels of a putative neuromodulator (L-proline) and the neurotransmitter dopamine, respectively. Mice that model the state of PRODH deficiency observed in humans with schizophrenia show increased neurotransmitter release at glutamatergic synapses as well as deficits in associative learning and response to psychomimetic drugs. Transcriptional profiling and pharmacological manipulations identified a transcriptional and behavioral interaction between the Prodh and Comt genes that is likely to represent a homeostatic response to enhanced dopaminergic signaling in the frontal cortex. This interaction modulates a number of schizophrenia-related phenotypes, providing a framework for understanding the high disease risk associated with this locus, the expression of the phenotype, or both.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disrupted in schizophrenia-1 (DISC1) gene is associated with several neuropsychiatric disorders as it is disrupted by a balanced translocation involving chromosomes 1 and 11 in a large Scottish pedigree with high prevalence of schizophrenia, bipolar disorder and major depression. Since its identification, several mouse models with DISC1 genetic modifications have been generated using different approaches. Interestingly, a natural deletion of 25bp in the 129 mouse strain alters the DISC1 gene reading frame leading to a premature stop codon very close to the gene breakpoint in the mutant allele of the Scottish family. In the present study we confirmed that the 129DISC1(Del) mutation results in reduced level of full length DISC1 in hippocampus of heterozygous mice and we have characterized the behavioral consequences of heterozygous 129DISC1(Del) mutation in a mixed B6129 genetic background. We found alterations in spontaneous locomotor activity (hyperactivity in males and hypoactivity in females), deficits in pre-pulse inhibition (PPI) and also increased despair behavior in heterozygous 129DISC1(Del) mice, thus reproducing typical behaviors associated to psychiatric disorders. Since this mouse strain is widely and commercially available, we propose it as an amenable tool to study DISC1-related biochemical alterations and psychiatric behaviors.
    Frontiers in Behavioral Neuroscience 07/2014; 8:253. DOI:10.3389/fnbeh.2014.00253 · 4.16 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.
    Frontiers in Synaptic Neuroscience 11/2014; 6:28. DOI:10.3389/fnsyn.2014.00028
  • [Show abstract] [Hide abstract]
    ABSTRACT: Velocardiofacial (VCFS; 22q11.2 deletion) syndrome is a genetic disorder that results from a hemizygous deletion of the q11.2 region on chromosome 22, and is associated with greatly increased risk for psychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. There is emerging evidence for the involvement of catechol-O-methyltransferase (COMT) and proline dehydrogenase (oxidase) 1 (PRODH) in the psychiatric phenotype of individuals with VCFS. Here, we tested the hypothesis that PRODH and COMT are associated with ASD in youths with VCFS. We found that individuals with VCFS and the low-activity alleles of both PRODH and COMT (rs4819756A and rs4680A) were more likely to present with ASD as compared with individuals with VCFS and the high-activity alleles of these genes [P<0.05; odds ratio=6.0 (95% confidence interval=1.27-28.26; N=87)]. Our results suggest that PRODH and COMT may interact to contribute to the ASD phenotype in individuals with VCFS.
    Psychiatric Genetics 10/2014; 24(6). DOI:10.1097/YPG.0000000000000062 · 2.27 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014