Proteomic analysis of vascular endothelial growth factor-induced endothelial cell differentiation reveals a role for chloride intracellular channel 4 (CLIC4) in tubular morphogenesis

Department of Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2006; 280(51):42397-404. DOI: 10.1074/jbc.M506724200
Source: PubMed

ABSTRACT Formation of new vessels from pre-existing capillaries demands extensive reprogramming of endothelial cells through transcriptional and post-transcriptional events. We show that 120 protein spots in a two-dimensional isoelectric focusing/electrophoretic analysis were affected during vascular endothelial growth factor-A-induced endothelial cell tubular morphogenesis in vitro, as a result of changes in charge or expression level of the corresponding proteins. For about 22% of the spots, the protein products could be identified, of which several previously have been implicated in cytoskeletal reorganization and angiogenesis. One such protein was heat shock protein 27, a chaperone involved in beta-actin rearrangement that was identified as regulated in degree of serine phosphorylation. We also identified regulation of chloride intracellular channel 4 (CLIC4), the expression of which decreased during tubular morphogenesis. CLIC4 was expressed at high levels in resting vessels, whereas expression was modulated during pathological angiogenesis such as in tumor vessels. The subcellular localization of CLIC4 in endothelial cells was dependent on whether cells were engaged in proliferation or tube formation. Antisense- and small interfering RNA-mediated suppression of CLIC4 expression led to arrest in tubular morphogenesis. Our data implicate CLIC4 in formation of a vessel lumen.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis. We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis. We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation. Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad.
    01/2015; 4(4). DOI:10.1016/j.molmet.2015.01.003
  • Source
    Revisiones en Biología Celular y Molecular, 01/2010: chapter Ovogénesis y Foliculogénesis: pages 34-92; Servicio Editorial de la Universidad del País Vasco., ISBN: 978-84-9860-347-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function.
    PLoS ONE 01/2015; 10(1):e115699. DOI:10.1371/journal.pone.0115699 · 3.53 Impact Factor