Article

Influence of CR3 (CD11b/CD18) Expression on Phagocytosis of Bordetella pertussis by Human Neutrophils

Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA.
Infection and Immunity (Impact Factor: 4.16). 12/2005; 73(11):7317-23. DOI: 10.1128/IAI.73.11.7317-7323.2005
Source: PubMed

ABSTRACT CR3 (CD11b/CD18) is expressed on neutrophils, and the engagement of CR3 can promote phagocytosis. CR3 serves as the receptor for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and for the adenylate cyclase toxin (ACT), which blocks neutrophil function. The influence of CR3, FHA, and ACT on the phagocytosis of B. pertussis by human neutrophils was examined. The surface expression and function of CR3 are regulated. Tumor necrosis factor alpha (TNF-alpha) and gamma interferon (IFN-gamma) increased CR3 surface expression, but only TNF-alpha increased the ability of neutrophils to phagocytose B. pertussis, suggesting that elevated CR3 expression alone is not sufficient to promote phagocytosis. Purified FHA and pertussis toxin also increased the surface expression of CR3 on neutrophils, while ACT and the B subunit of pertussis toxin did not affect CR3 expression. FHA-mediated attachment to CR3 can lead to phagocytosis, especially in the absence of ACT. FHA mutants failed to attach and were not phagocytosed by neutrophils. Similarly, an antibody to CR3 blocked both attachment and phagocytosis. The addition of exogenous FHA enhanced the attachment and phagocytosis of wild-type B. pertussis and FHA mutants. Mutants lacking the SphB1 protease, which cleaves FHA and allows the release of FHA from the bacterial surface, were phagocytosed more efficiently than wild-type bacteria. ACT mutants were efficiently phagocytosed, but wild-type B. pertussis or ACT mutants plus exogenous ACT resisted phagocytosis. These studies suggest that the activation and surface expression of CR3, FHA expression, and the efficiency of ACT internalization all influence whether B. pertussis will be phagocytosed and ultimately killed by neutrophils.

Download full-text

Full-text

Available from: Paula Mobberley-schuman, Aug 26, 2015
0 Followers
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resident quiescent microglia have been thought to respond rapidly to various pathologic events in the brain by proliferating and producing many bioactive substances, including proinflammatory cytokines and nitric oxide (NO). In this study, we investigated the reaction of microglia in traumatic and ischemic lesions caused by stab wounds and the transient 90-min occlusion of middle cerebral artery in a mature rat brain. Although many Iba1(+) resident microglia underwent apoptotic degeneration in the lesion core within 24 hr after the onset of the brain insult as revealed by TUNEL staining, numerous small, round, isolectin B4(+)/CD11b(+)/CD68(+) cells were localized in the lesion core. These small, round cells with diameters of 7-9 mum and polymorph nuclei expressed neutrophil-specific elastase, alkaline phosphatase, and platelet-activating factor receptor. Accordingly, they were not activated microglia but neutrophils. Immunohistochemical staining with antibodies to inducible NO synthase (iNOS) showed that most iNOS(+) cells were neutrophils. The results from spatial and kinetic analyses using RT-PCR and immunoblotting were consistent with the immunohistochemical observations. These results suggest the necessity of reevaluating the traditional view on the roles of activated microglia in severe neuropathologic events. Note that the traditional microglial markers isolectin B4, CD11b, and CD68 are not specific for microglia, particularly in a pathologic brain.
    Journal of Neuroscience Research 04/2007; 85(5):994-1009. DOI:10.1002/jnr.21198 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bordetella pertussis is the causative agent of pertussis (whooping cough). Despite high vaccination coverage, pertussis remains a significant disease in many countries. Besides vaccination, transient carriage of Bordetella spp. or other cross-reacting organisms adds to the immunity against pertussis. However, the various immunological mechanisms conferring protection remain largely unknown. In this study, paired serum samples from 464 healthy Norwegian military recruits were collected, the first at enrolment and the second about 8 months later. The prevalence of pertussis during military service was examined by comparing the paired serum samples for immunoglobulin G (IgG) antibodies against pertussis toxin (PT) by enzyme-linked immunosorbent assay (ELISA). Seventy-eight percent of the recruits had low levels of IgG antibodies against PT in both samples. Conversely, 8.4% of the recruits demonstrated high anti-PT IgG levels in the first sample, indicative of recent pertussis prior to enrolment. One recruit experienced seroconversion, indicating pertussis during service. A subset of 248 serum samples with low, medium, and high anti-PT IgG titers were analyzed by a different ELISA kit for IgG and IgA antibodies against PT and filamentous hemagglutinin (FHA) and for opsonophagocytic activity (OPA), for induction of C3b deposition products, and for IgG binding with live B. pertussis as the antigen. We observed high correlations between OPA and IgG against live bacteria (r = 0.83), between OPA and IgG anti-FHA (r = 0.79), between OPA and anti-PT IgG (r = 0.68), and between OPA and C3b binding (r = 0.70) (P < 0.0001 for all). Anti-PT IgA did not correlate closely with the other assays.
    Clinical and Vaccine Immunology 07/2007; 14(7):855-62. DOI:10.1128/CVI.00081-07 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bordetella pertussis infection of the airways causes the disease pertussis (or whooping cough). The infection can be fatal in infants, but in older children, adolescents and adults usually results in a chronic cough of varying severity that persists long after clearance of the infection. The cause of the cough is unknown, but is presumably a result of the pathogenic effects of one or more of the various virulence factors produced by this bacterium. Accumulating recent evidence indicates that the majority of the virulence-associated effects of these factors is devoted to suppression and modulation of the host immune response, which can be skewed towards the recently described Th17 profile. Although the interplay between virulence factors and immune mechanisms might have evolved to benefit both partners in the host-pathogen interaction, it could also contribute to the severe disease pathology associated with this infection.
    Current Opinion in Pharmacology 07/2007; 7(3):272-8. DOI:10.1016/j.coph.2006.12.004 · 4.23 Impact Factor
Show more