Classical Embryological Studies and Modern Genetic Analysis of Midbrain and Cerebellum Development

Howard Hughes Medical Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.
Current Topics in Developmental Biology (Impact Factor: 4.21). 02/2005; 69:101-38. DOI: 10.1016/S0070-2153(05)69005-9
Source: PubMed

ABSTRACT The brain is a remarkably complex anatomical structure that contains a diverse array of subdivisions, cell types, and synaptic connections. It is equally extraordinary in its physiological properties, as it constantly evaluates and integrates external stimuli as well as controls a complicated internal environment. The brain can be divided into three primary broad regions: the forebrain, midbrain (Mb), and hindbrain (Hb), each of which contain further subdivisions. The regions considered in this chapter are the Mb and most-anterior Hb (Mb/aHb), which are derived from the mesencephalon (mes) and rhombomere 1 (r1), respectively. The dorsal Mb consists of the laminated superior colliculus and the globular inferior colliculus (Fig. 1A and B), which modulate visual and auditory stimuli, respectively. The dorsal component of the aHb is the highly foliated cerebellum (Cb), which is primarily attributed to controlling motor skills (Fig. 1A and B). In contrast, the ventral Mb/aHb (Fig. 1B) consists of distinct clusters of neurons that together comprise a network of nuclei and projections-notably, the Mb dopaminergic and Hb serotonergic and Mb/aHb cholinergic neurons (Fig. 1G and H), which modulate a collection of behaviors, including movement, arousal, feeding, wakefulness, and emotion. Historically, the dorsal Mb and Cb have been studied using the chick as a model system because of the ease of performing both cell labeling and tissue transplants in the embryo in ovo; currently DNA electroporation techniques are also used. More recently the mouse has emerged as a powerful genetic system with numerous advantages to study events underpinning Mb/aHb development. There is a diverse array of spontaneous mutants with both Mb- and Cb-related phenotypes. In addition, numerous gene functions have been enumerated in mouse, gene expression is similar across vertebrates, and powerful genetic tools have been developed. Finally, additional insight into Mb/aHb function has been gained from studies of genetic diseases, such as Parkinson's disease, schizophrenia, cancer, and Dandy Walker syndrome, that afflict the Mb/aHb in humans and have genetic counterparts in mouse. Accordingly, this chapter discusses a spectrum of experiments, including classic embryology, in vitro assays, sophisticated genetic methods, and human diseases. We begin with an overview of Mb and aHb anatomy and physiology and mes/r1 gene expression patterns. We then provide a summary of fate-mapping studies that collectively demonstrate the complex cell behaviors that occur while the Mb and aHb primordia are established during embryogenesis and discuss the integration of both anterior-posterior (A-P) and dorsal-ventral (D-V) patterning. Finally, we describe some aspects of postnatal development and some of the insights gained from human diseases.

Download full-text


Available from: Sandra Blaess, Aug 20, 2015
1 Follower
  • Source
    • "The earliest markers for GABAergic PC progenitors express Neph3, E-cadherin (Mizuhara et al., 2010) as well as Corl2 (Minaki et al., 2008) in the ventricular and subventricular zone while in post-mitotic PCs neurons other molecular determinants such as Calbindin, is expressed (Figures 2L–P; Sotelo, 2004; Muguruza and Sasai, 2012). Moreover, the expression domains of three pro-neural genes (Ascl1, Neurog1, and Neurog2) overlap with that of Ptf1a in the VZ (Zervas et al., 2005; Zordan et al., 2008; Dastjerdi et al., 2012; Figure 3D). A closer analysis of the role of Ascl1 in cerebellar neurogenesis, established that Ascl1 positive progenitors progressively delaminate out of the VZ to settle first in the prospective white matter, and then in the cerebellar cortex (Grimaldi et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.
    Frontiers in Neuroanatomy 06/2013; 7:18. DOI:10.3389/fnana.2013.00018 · 4.18 Impact Factor
    • "The boundary between Otx2 and Gbx2 expression domains initially demarcates the border between mes-and metencephalon and the location of the isthmic organizer, a tissue patterning structure that promotes interactions between cerebellar patterning genes (reviewed in Zervas et al. 2005). Several studies have examined putative allocation events during this period, which generate the Purkinje cell population: the general conclusion is that the entire Purkinje cell population in the adult arises from $100 to 150 precursors, likely specified at around E7–E8 (Baader et al. 1996; Mathis et al. 1997; Hawkes et al. 1998; Watson et al. 2005), although there is no evidence that these are restricted to a particular Purkinje cell subset. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar architecture is organized around the Purkinje cell. Purkinje cells in the mouse cerebellum come in many different subtypes, organized first into four transverse zones and then further grouped into hundreds of reproducible topographical units – stripes. Stripes are identified by their functional properties, connectivity, and expression profiles. The molecular pattern of stripes is highly reproducible between individuals and conserved through evolution. Pattern formation in the cerebellar cortex is a multistage process that begins with the generation of the Purkinje cells in the ventricular zone (VZ) of the fourth ventricle. During this stage or shortly after, Purkinje cell subtypes are specified toward specific positions. Purkinje cells migrate from the VZ to form an array of clusters that form the framework for cerebellar topography. At around birth these clusters disperse, triggered by a Reelin signaling pathway, to form the adult stripe array. The chapter will begin with a brief overview of adult cerebellar topography, primarily focusing on the mouse cerebellum, and then discuss the cellular and molecular mechanisms that establish these remarkable patterns.
    Handbook of the Cerebellum and Cerebellar Disorders, 01/2013: pages 43-59; , ISBN: 978-94-007-1332-1
  • Source
    • "This is especially intriguing since the roles of NSCL1 in other regions of the CNS are only partially understood (Chuan- Ming et al., 1999; Theodorakis et al., 2002) and since Brn3a is mostly considered as a marker for sensory neurons (Dykes et al., 2010; Lanier et al., 2007), and therefore its expression at boundary cells is surprising. Notably, MHB-derived FGF8 is known to either promote or inhibit differentiation of different types of neural progenitors at different DV parts of the midbrain and r1 (Alexandre et al., 2006; Basson et al., 2008; Brand et al., 1996; Canning et al., 2007; Crossley et al., 1996; Jukkola et al., 2006; Liu and Joyner, 2001; Mason et al., 2000; Raible and Brand, 2004; Saarimäki-Vire et al., 2007; Wassef and Joyner, 1997; Zervas et al., 2005). Moreover, in the zebrafish, FGF20, which is expressed at rhombomere centres, prevents neuronal differentiation at these sites, allowing neurogenesis to occur only at neighbouring regions (Gonzalez-Quevedo et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Compartment boundaries act as organizing centers that segregate adjacent areas into domains of gene expression and regulation, and control their distinct fates via the secretion of signalling factors. During hindbrain development, a specialized cell-population forms boundaries between rhombomeres. These boundary cells demonstrate unique morphological properties and express multiple genes that differs them from intra-rhombomeric cells. Yet, little is known regarding the mechanisms that controls the expression or function of these boundary markers. Multiple components of the FGF signaling system, including ligands, receptors, downstream effectors as well as proteoglycans are shown to localize to boundary cells in the chick hindbrain. These patterns raise the possibility that FGF signaling plays a role in regulating boundary properties. We provide evidence to the role of FGF signaling, particularly the boundary-derived FGF3, in regulating the expression of multiple markers at hindbrain boundaries. These findings enable further characterization of the unique boundary-cell population, and expose a new function for FGFs as regulators of boundary-gene expression in the chick hindbrain.
    Biology Open 02/2012; 1(2):67-74. DOI:10.1242/bio.2011032 · 2.42 Impact Factor
Show more