Relationship between mRNA levels and protein accumulation in a chloroplast promoter-mutant of Chlamydomonas reinhardtii.

Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
Molecular Genetics and Genomics (Impact Factor: 2.83). 01/2006; 274(6):637-43. DOI: 10.1007/s00438-005-0056-x
Source: PubMed

ABSTRACT The photosynthetic chloroplast mutant G64 of Chlamydomonas reinhardtii was shown to contain a single point mutation within the 5' region of the psbD gene encoding the D2 protein of the photosystem II reaction center. The mutation affects the sequence element TATAATAT which has previously been hypothesized to function as the psbD promoter. Run-on analysis confirmed that transcription of psbD in the mutant was reduced to approximately 10% of the wild-type level. However, psbD mRNA accumulated to approximately 35%, despite the prominent decrease in RNA synthesis. This suggests that RNA-stabilization effects can compensate to some extent for a reduction in transcriptional activity. Interestingly, a direct correlation between transcript levels and the accumulation of the psbD gene product, the D2-protein, was observed in G64. The data suggest that posttranscriptionally acting regulatory factors determine the rate-limiting steps of chloroplast psbD gene expression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After endosymbiosis, organelles lost most of their initial genome. Moreover, expression of the few remaining genes became tightly controlled by the nucleus through trans-acting protein factors that are required for post-transcriptional expression (maturation/stability or translation) of a single (or a few) specific organelle target mRNA(s). Here, we characterize the nucleus-encoded TDA1 factor, which is specifically required for translation of the chloroplast atpA transcript that encodes subunit α of ATP synthase in Chlamydomonas reinhardtii. The sequence of TDA1 contains eight copies of a degenerate 38-residue motif, that we named octotrico peptide repeat (OPR), which has been previously described in a few other trans-acting factors targeted to the C. reinhardtii chloroplast. Interestingly, a proportion of the untranslated atpA transcripts are sequestered into high-density, non-polysomic, ribonucleoprotein complexes. Our results suggest that TDA1 has a dual function: (i) trapping a subset of untranslated atpA transcripts into non-polysomic complexes, and (ii) translational activation of these transcripts. We discuss these results in light of our previous observation that only a proportion of atpA transcripts are translated at any given time in the chloroplast of C. reinhardtii.
    The Plant Journal 05/2011; 67(6):1055-66. · 6.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In an optical network, the optical signal transmitted along the lightpath may need to travel through a number of cross connect switches (OXCs), optical amplifiers, and fiber segments. While the signal propagates toward its destination, the optical components would continuously degrade the signal quality by inducing impairments. When the signal degradation is so severe that the received bit-error rate (BER) becomes unacceptably high, the lightpath would not be able to provide good service quality to a connection request. Such a lightpath, which has poor signal quality due to transmission impairments in the physical layer, should not be used for connection provisioning in the network layer. This paper presents an adaptive PID controller based on the power compensation of BP neural network to restrict the influence of the impairment power for a networked control system (NCS) with the presence of controller time-delay and power compensation at amplifiers' node firstly. Control algorithms continuously adjust their channel powers in response to dynamic information from the network links. And the controller could achieve the on-line adaptive power compensation without changing the parameters of PID controller. The results of simulation show that the proposed controller could adjust better channel power at the transmitter sites and achieve channel optical signal-to-noise ratio (OSNR) optimization with controller's time-delay.
    Optics Communications 01/2011; 284(21):5037-5042. · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Translation initiation represents a key step during regulation of gene expression in chloroplasts. Here, we report on the identification and characterization of three suppressor point mutations which overcome a translational defect caused by the deletion of a U-rich element in the 5'-untranslated region (5'-UTR) of the psbD mRNA in the green alga Chlamydomonas reinhardtii. All three suppressors affect a secondary RNA structure encompassing the psbD AUG initiation codon within a double-stranded region as judged by the analysis of site-directed chloroplast mutants as well as in vitro RNA mapping experiments using RNase H. In conclusion, the data suggest that these new element serves as a negative regulator which mediates a rapid shut-down of D2 synthesis.
    Nucleic Acids Research 02/2006; 34(1):386-94. · 8.81 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014

Birgit Klinkert