Article

Genecology of Douglas fir in western Oregon and Washington.

USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.
Annals of Botany (Impact Factor: 3.3). 01/2006; 96(7):1199-214. DOI: 10.1093/aob/mci278
Source: PubMed

ABSTRACT Genecological knowledge is important for understanding evolutionary processes and for managing genetic resources. Previous studies of coastal Douglas fir (Pseudotsuga menziesii var. menziesii) have been inconclusive with respect to geographical patterns of variation, due in part to limited sample intensity and geographical and climatic representation. This study describes and maps patterns of genetic variation in adaptive traits in coastal Douglas fir in western Oregon and Washington, USA.
Traits of growth, phenology and partitioning were measured in seedlings of 1338 parents from 1048 locations grown in common gardens. Relations between traits and environments of seed sources were explored using regressions and canonical correlation analysis. Maps of genetic variation as related to the environment were developed using a geographical information system (GIS).
Populations differed considerably for adaptive traits, in particular for bud phenology and emergence. Variation in bud-set, emergence and growth was strongly related to elevation and cool-season temperatures. Variation in bud-burst and partitioning to stem diameter versus height was related to latitude and summer drought. Seedlings from the east side of the Washington Cascades were considerably smaller, set bud later and burst bud earlier than populations from the west side.
Winter temperatures and frost dates are of overriding importance to the adaptation of Douglas fir to Pacific Northwest environments. Summer drought is of less importance. Maps generated using canonical correlation analysis and GIS allow easy visualization of a complex array of traits as related to a complex array of environments. The composite traits derived from canonical correlation analysis show two different patterns of variation associated with different gradients of cool-season temperatures and summer drought. The difference in growth and phenology between the westside and eastside Washington Cascades is hypothesized to be a consequence of the presence of interior variety (P. menziessii var. glauca) on the eastside.

1 Follower
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Budburst is a key adaptive trait that can help us understand how plants respond to a changing climate from the molecular to landscape scale. Despite this, acquisition of budburst data is constrained by a lack of information at the plant scale on the environmental stimuli associated with the release of bud dormancy. Additionally, to date, little effort has been devoted to phenotyping plants in natural populations due to the challenge of accounting for the effect of environmental variation. Nonetheless, natural selection operates on natural populations, and investigation of adaptive phenotypes in situ is warranted and can validate results from controlled laboratory experiments. To identify genomic effects on individual plant phenotypes in nature, environmental drivers must be concurrently measured, and characterized. Here, we designed and evaluated a sensor to meet these requirements for temperate woody plants. It was designed for use on a tree branch to measure the timing of budburst together with its key environmental drivers; temperature, and photoperiod. Specifically, we evaluated the sensor through independent corroboration with time-lapse photography and a suite of environmental sampling instruments. We also tested whether the presence of the device on a branch influenced the timing of budburst. Our results indicated the following: the temperatures measured by the budburst sensor's digital thermometer closely approximated the temperatures measured using a thermocouple touching plant tissue; the photoperiod detector measured ambient light with the same accuracy as did time lapse photography; the budburst sensor accurately detected the timing of budburst; and the sensor itself did not influence the budburst timing of Populus clones. Among other potential applications, future use of the sensor may provide plant phenotyping at the landscape level for integration with landscape genomics.
    Frontiers in Plant Science 03/2015; 6:123. DOI:10.3389/fpls.2015.00123 · 3.64 Impact Factor
  • Source
    Forest Ecology and Management 07/2014; 324:126-137. DOI:10.1016/j.foreco.2014.02.035 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Climatic adaptations are the foundation of conifer genecology, but populations also display variation in traits for nitrogen (N) utilization, along with some heritable specificity for ectomycorrhizal fungi (EMF). We examined soil and EMF influences on assisted migration of Douglas-fir (Pseudotsuga menziesii var. menziesii) by comparing two contrasting maritime populations planted up to 400 km northward in southwestern British Columbia.Soil N availability and host N status (via δ15N) were assessed across 12 maritime test sites, whereas EMF on local and introduced hosts were quantified by morphotyping with molecular analysis.Climatic transfer effects were only significant with soil N concentrations of test sites as a covariate, and illustrated how height growth was compromised for populations originating from relatively dry or cool maritime environments. We also found evidence for EMF maladaptation, where height declined by up to 15% with the extent of dissimilarity in EMF communities of southern populations relative to local hosts.The results demonstrate how geographic structure in belowground environments can contribute to conifer genecology. Differences in the inherent growth potential of conifers may be partly related to nutritional adaptations arising under native soil fertility, and optimization of this growth potential likely requires close affiliation with local EMF communities.
    New Phytologist 01/2015; 206(3). DOI:10.1111/nph.13287 · 6.55 Impact Factor

Preview

Download
0 Downloads