Genomic targets of the human c-Myc protein.

DNAX Research Institute, Palo Alto, California 94304, USA.
Genes & Development (Impact Factor: 12.64). 06/2003; 17(9):1115-29. DOI: 10.1101/gad.1067003
Source: PubMed

ABSTRACT The transcription factor Myc is induced by mitogenic signals and regulates downstream cellular responses. If overexpressed, Myc promotes malignant transformation. Myc modulates expression of diverse genes in experimental systems, but few are proven direct targets. Here, we present a large-scale screen for genomic Myc-binding sites in live human cells. We used bioinformatics to select consensus DNA elements (CACGTG or E-boxes) situated in the 5' regulatory region of genes and measured Myc binding to those sequences in vivo by quantitative chromatin immunoprecipitation. Strikingly, most promoter-associated E-boxes showed selective recovery with Myc, unlike non-E-box promoters or E-boxes in bulk genomic DNA. Promoter E-boxes were distributed in two groups bound by Myc at distinct frequencies. The high-affinity group included an estimated 11% of all cellular loci, was highly conserved among different cells, and was bound independently of Myc expression levels. Overexpressed Myc associated at increased frequency with low-affinity targets and, at extreme levels, also with other sequences, suggesting that some binding was not sequence-specific. The strongest DNA-sequence parameter defining high-affinity targets was the location of E-boxes within CpG islands, correlating with an open, preacetylated state of chromatin. Myc further enhanced histone acetylation, with or without accompanying induction of mRNA expression. Our findings point to a high regulatory and biological diversity among Myc-target genes.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the influence of E2F-1 on the growth of human gastric cancer (GC) cells in vivo and the mechanism involved. E2F-1 recombinant lentiviral vectors were injected into xenograft tumors of MGC-803 cells in nude mice, and then tumor growth was investigated. Overexpression of transcription factor E2F-1 was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting analysis. Apoptosis rates were determined using a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Expression levels of certain cell cycle regulators and apoptosis-related proteins, such as Bax, survivin, Bcl-2, cyclin D1, S-phase kinase-associated protein 2, and c-Myc were examined by Western blotting and RT-PCR. Xenograft tumors of MGC-803 cells in nude mice injected with E2F-1 recombinant lentiviral vectors stably overexpressed the E2F-1 gene as measured by semi-quantitative RT-PCR (relative mRNA expression: 0.10 ± 0.02 vs 0.05 ± 0.02 for control vector and 0.06 ± 0.03 for no infection; both P < 0.01) and Western blotting (relative protein expression: 1.90 ± 0.05 vs 1.10 ± 0.03 in control vector infected and 1.11 ± 0.02 for no infection; both P < 0.01). The growth-curve of tumor volumes revealed that infection with E2F-1 recombinant lentiviral vectors significantly inhibited the growth of human GC xenografts (2.81 ± 1.02 vs 6.18 ± 1.15 in control vector infected and 5.87 ± 1.23 with no infection; both P < 0.05) at 15 d after treatment. TUNEL analysis demonstrated that E2F-1 overexpression promoted tumor cell apoptosis (18.6% ± 2.3% vs 6.7% ± 1.2% in control vector infected 6.3% ± 1.2% for no infection; both P < 0.05). Furthermore, lentiviral vector-mediated E2F-1 overexpression increased the expression of Bax and suppressed survivin, Bcl-2, cyclin D1, Skp2, and c-Myc expression in tumor tissue. E2F-1 inhibits growth of GC cells via regulating multiple signaling pathways, and may play an important role in targeted therapy for GC.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we aimed to screen genes associated with intravenous immunoglobulin (IVIG) responding in patients with Kawasaki disease (KD) and thus explore the underlying molecular mechanism of IVIG resistance. The differentially expressed genes (DEGs) were identified by samr package in R. Then, protein-protein interaction (PPI) networks were constructed by STRING software. We further collected the regulatory data from TRANSFAC database, followed by regulatory interaction network construction. A total 194 of DEGs, including 185 up- and 9 down-regulated DEGs, were identified between IVIG-responding and non-responding patients with KD at acute stage. In contrast, no DEGs were found at convalescent stage. PPI networks and regulatory networks were constructed based on the 185 up-regulated genes at acute stage. The degrees of TFRC (transferrin receptor protein 1) and GADD45A (growth arrest and DNA-damage-inducible alpha) were higher than other genes, and meanwhile MYC (V-Myc Myelocytomatosis Viral Oncogene Homolog) and E2F1 (E2F Transcription Factor 1) were found to be two TFs (transcription factors) with the highest degrees. In conclusions, the response to IVIG in Kawasaki disease patients may be involved in the expression of TFRC, GADD45A, MYC and E2F1. Copyright © 2014. Published by Elsevier Inc.
    Experimental and Molecular Pathology 11/2014; 98(1):7-12. DOI:10.1016/j.yexmp.2014.11.006 · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myc is a well-known transcription factor with important roles in cell cycle, apoptosis, and cellular transformation. Long noncoding RNAs (lncRNAs) have recently emerged as an important class of regulatory RNAs. Here, we show that lncRNAs are a main component of the Myc-regulated transcriptional program using the P493-6 tetracycline-repressible myc model. We demonstrate that both Myc-induced mRNAs and lncRNAs are significantly enriched for Myc binding sites. In contrast to Myc-repressed mRNAs, Myc-repressed lncRNAs are significantly enriched for Myc binding sites. Subcellular localization analysis revealed that compared to mRNAs, lncRNAs more often have a specific subcellular localization with a markedly higher percentage of nuclear enrichment within the Myc-repressed lncRNA set. Parallel analysis of differentially expressed lncRNAs and mRNAs identified 105 juxtaposed lncRNA-mRNA pairs, indicative for regulation in cis. To support the potential relevance of the Myc-regulated lncRNAs in cellular transformation, we analyzed their expression in primary Myc-high and Myc-low B-cell lymphomas. In total, 54% of the lncRNAs differentially expressed between the lymphoma subsets were identified as Myc-regulated in P493-6 cells. This study is the first to show that lncRNAs are an important factor within the Myc-regulated transcriptional program and indicates a marked difference between Myc-repressed lncRNAs and mRNAs.-Winkle, M., van den Berg, A., Tayari, M., Sietzema, J., Terpstra, M., Kortman, G., de Jong, D., Visser, L., Diepstra, A., Kok, K., Kluiver, J. Long noncoding RNAs as a novel component of the Myc transcriptional network. © FASEB.
    The FASEB Journal 02/2015; DOI:10.1096/fj.14-263889 · 5.48 Impact Factor


Available from