Article

The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins.

Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquées, CNRS, Unité Mixte de Recherche 8113, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2006; 280(52):43073-8. DOI: 10.1074/jbc.M510087200
Source: PubMed

ABSTRACT The lethal disease anthrax is propagated by spores of Bacillus anthracis, which can penetrate into the mammalian host by inhalation, causing a rapid progression of the disease and a mostly fatal outcome. We have solved the three-dimensional structure of the major surface protein BclA on B. anthracis spores. Surprisingly, the structure resembles C1q, the first component of complement, despite there being no sequence homology. Although most assays for C1q-like activity, including binding to C1q receptors, suggest that BclA does not mimic C1q, we show that BclA, as well as C1q, interacts with components of the lung alveolar surfactant layer. Thus, to better recognize and invade its hosts, this pathogenic soil bacterium may have evolved a surface protein whose structure is strikingly close to a mammalian protein.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of 15 secreted proteins, the C1q/TNF-related proteins (CTRP1-15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis.
    Reviews in Endocrine and Metabolic Disorders 08/2013; · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus anthracis and other pathogenic Bacillus species form spores that are surrounded by an exosporium, a balloon-like layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence. The exosporium consists of a hair-like nap and a paracrystalline basal layer. The filaments of the nap are comprised of trimers of the collagen-like glycoprotein BclA, while the basal layer contains approximately 20 different proteins. One of these proteins, BxpB, forms tight complexes with BclA and is required for attachment of essentially all BclA filaments to the basal layer. Another basal layer protein, ExsB, is required for the stable attachment of the exosporium to the spore. To determine the organization of BclA and BxpB within the exosporium, we used cryo-electron microscopy, cryo-sectioning and crystallographic analysis of negatively stained exosporium fragments to compare wildtype spores and mutant spores lacking BclA, BxpB or ExsB (ΔbclA, ΔbxpB and ΔexsB spores, respectively). The trimeric BclA filaments are attached to basal layer surface protrusions that appear to be trimers of BxpB. The protrusions interact with a crystalline layer of hexagonal subunits formed by other basal layer proteins. Although ΔbxpB spores retain the hexagonal subunits, the basal layer is not organized with crystalline order and lacks basal layer protrusions and most BclA filaments, indicating a central role for BxpB in exosporium organization.
    Journal of Structural Biology 03/2014; · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large number of collagen-like proteins have been identified in bacteria during the past ten years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in E. coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35 - 39 °C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions.
    Journal of Structural Biology 01/2014; · 3.37 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Jun 29, 2014