Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice - Potential implications for tumorigenesis

Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 01/2006; 280(51):42237-41. DOI: 10.1074/jbc.M510139200
Source: PubMed


Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits distinctive and important pericellular cleavage functions. Recently, we determined that MT1-MMP was trafficked to the centrosomes in the course of endocytosis. Our data suggested that the functionally important, integral, centrosomal protein, pericentrin-2, was a cleavage target of MT1-MMP in human and in canine cells and that the sequence of the cleavage sites were ALRRLLG1156 downward arrow L1157FG and ALRRLLS2068 downward arrow L2069FG, respectively. The presence of Asp-948 at the P1 position inactivated the corresponding site (ALRRLLD948-L949FGD) in murine pericentrin. To confirm that MT1-MMP itself cleaves pericentrin directly, rather than indirectly, we analyzed the cleavage of the peptides that span the MT1-MMP cleavage site. In addition, we analyzed glioma U251 cells, which co-expressed MT1-MMP with the wild type murine pericentrin and the D948G mutant. We determined that the D948G mutant that exhibited the cleavage sequence of human pericentrin was sensitive to MT1-MMP, whereas unmodified murine pericentrin was resistant to proteolysis. Taken together, our results confirm that MT1-MMP cleaves pericentrin-2 in humans but not in mice and that mouse models of cancer probably cannot be used to critically examine MT1-MMP functionality.

4 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumorigenesis involves not only tumor cells that become transformed but also the peritumoral stroma which reacts inducing inflammatory and angiogenic responses. Angiogenesis, the formation of new capillaries from preexisting vessels, is an absolute requirement for tumor growth and metastasis, and it can be induced and modulated by a wide variety of soluble factors. During angiogenesis, quiescent endothelial cells are activated and they initiate migration by degrading the basement membranes through the action of specific proteases, in particular of matrix metalloproteinases (MMPs). Among these, the membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified as a key player during the angiogenic response. In this review, we will summarize the role of MT1-MMP in angiogenesis and the regulatory mechanisms of this protease in endothelial cells. Since our recent findings have suggested that MT1-MMP is not universally required for angiogenesis, we hypothesize that the regulation and participation of MT1-MMP in angiogenesis may depend on the nature of the angiogenic stimulus. Experiments aimed at testing this hypothesis have shown that similarly to the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12, lipopolysaccharide (LPS) seems to induce the formation of capillary tubes by human or mouse endothelial cells (ECs) in an MT1-MMP-independent manner. The implications of these findings in the potential use of MT1-MMP inhibitors in cancer therapy are discussed.
    Cancer and metastasis reviews 04/2006; 25(1):77-86. DOI:10.1007/s10555-006-7891-z · 7.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MMPs are multifunctional enzymes capable of targeting the extracellular matrix, growth factors, cytokines and cell surface-associated adhesion and signaling receptors. The cellular localization and the activity of MMPs are tightly controlled at both the transcriptional and the post-transcriptional levels. Mislocalization and presentation in unconventional cellular compartments provide MMPs with an opportunity to cleave previously unidentified proteins. This review is focused on two, entirely different MMPs, one of which is membrane-tethered and another of which is soluble (MT1-MMP and MMP-26, respectively) from twenty four known human MMPs. Our recent studies determined that both of these enzymes functioned at unexpected cellular compartments and it was resulted in the identification of novel proteolytic pathways, whose significance we only partially comprehend as of this writing. It is reasonable, however, to hypothesize from these data that many individual MMPs perform in a similar manner and display a much broader range of functions compared to what we earlier thought.
    Cancer and metastasis reviews 04/2006; 25(1):87-98. DOI:10.1007/s10555-006-7892-y · 7.23 Impact Factor
  • Source

    American Journal Of Pathology 11/2006; 169(4):1101-3. DOI:10.2353/ajpath.2006.060553 · 4.59 Impact Factor
Show more