Nuclear transfer of M-phase ferret fibroblasts synchronized with the microtubule inhibitor demecolcine.

Department of Anatomy & Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
Journal of Experimental Zoology Part A Comparative Experimental Biology 01/2006; 303(12):1126-34. DOI: 10.1002/jez.a.234
Source: PubMed

ABSTRACT The development of reconstructed embryos following nuclear transfer (NT) appears to be dependent upon a variety of factors, including cell cycle synchronization between the donor nucleus and recipient oocyte. Here we use the microtubule inhibitor, demecolcine, to synchronize ferret fibroblasts in metaphase (M-phase) in order to match their cell cycle position with that of the recipient oocyte at the time of NT. The fibroblasts were obtained from 28-day fetuses and cultured for 1-30 days prior to NT. Fibroblast cultures were treated with 0.05 microg/ml of demecolcine for 3 hr or overnight (14-16 hr) after various times in culture to determine the optimal conditions for M-phase synchronization. The percentage of G2/M-phase cells in demecolcine-treated cultures was significantly greater than that found in untreated cultures (P<0.05). Optimally synchronized M-phase fibroblasts were collected by mitotic shake-off and evaluated for their effectiveness in NT. M-phase somatic cell-derived NT embryos reconstituted by electrofusion or microinjection underwent implantation and formed fetuses at similar rates (5.4% vs. 3.4%, and 1.8% vs. 1.2%, respectively); however, no NT embryos developed to term. In summary, these data demonstrate two important points. First, demecolcine treatment effectively synchronizes ferret fibroblasts in M-phase of the cell cycle; and second, these somatic cells are capable of driving embryo development following NT. Our results should facilitate the development of cloned ferrets as an animal model for human lung disease such as influenza and cystic fibrosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic cell nuclear transfer (SCNT) offers great potential for developing better animal models of human disease. The domestic ferret (Mustela putorius furo) is an ideal animal model for influenza infections and potentially other human respiratory diseases such as cystic fibrosis, where mouse models have failed to reproduce the human disease phenotype. Here, we report the successful production of live cloned, reproductively competent, ferrets using species-specific SCNT methodologies. Critical to developing a successful SCNT protocol for the ferret was the finding that hormonal treatment, normally used for superovulation, adversely affected the developmental potential of recipient oocytes. The onset of Oct4 expression was delayed and incomplete in parthenogenetically activated oocytes collected from hormone-treated females relative to oocytes collected from females naturally mated with vasectomized males. Stimulation induced by mating and in vitro oocyte maturation produced the optimal oocyte recipient for SCNT. Although nuclear injection and cell fusion produced mid-term fetuses at equivalent rates (approximately 3-4%), only cell fusion gave rise to healthy surviving clones. Single cell fusion rates and the efficiency of SCNT were also enhanced by placing two somatic cells into the perivitelline space. These species-specific modifications facilitated the birth of live, healthy, and fertile cloned ferrets. The development of microsatellite genotyping for domestic ferrets confirmed that ferret clones were genetically derived from their respective somatic cells and unrelated to their surrogate mother. With this technology, it is now feasible to begin generating genetically defined ferrets for studying transmissible and inherited human lung diseases. Cloning of the domestic ferret may also aid in recovery and conservation of the endangered black-footed ferret and European mink.
    Developmental Biology 06/2006; 293(2):439-48. · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effect of chemical inhibitors on the cell-cycle synchronisation in cat fibroblast cells and evaluated the development of interspecies embryos reconstructed from cat donor cells and enucleated bovine oocytes. Cat fibroblast cells were treated with 15 μg/mL roscovitine or 0.05 μg/mL deme-colcine prior to cell cycle analysis and nuclear transfer. The percentage of cat fibroblast cells arrested at the G0/G1 phase in the roscovitine group was similar to that in the control group without any treatment. The percentage of cells arrested at the G2/M phase was significantly higher in the demecolcine group than in the control group. The fusion rate of interspecies couplets was significantly greater in the roscovitine group than in the control group. Most embryos stopped the development at the 2- or 4-cell stage, and none developed into blastocysts. Chemical inhibitor-induced donor cell cycle synchronisation did not overcome developmental arrest in interspecies cloned embryos.
    Acta Veterinaria Hungarica 12/2013; · 0.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have previously been conducted regarding cell cycle synchronization in mammalian somatic cells. However, limited work has been performed on the control of cell cycle stages in the somatic cells of fish. The aim of this study was to determine the cell cycle arresting effects of several dimethyl sulfoxide (DMSO) concentrations for different times on different cell cycle stages of goldfish caudal fin-derived fibroblasts. Results demonstrated that the cycling cells or control group (68.29%) yields significantly higher (p < 0.05) arrest in G0/G1 phase compared with the group treated for 24 h with different concentrations (0.5%, 1.0% or 1.5%) of DMSO (64.88%, 65.70%, 64.22% respectively). The cell cycle synchronization in the treatment of cells with 1.0% DMSO at 48 h (81.14%) was significantly higher than that in the groups treated for 24 h (76.82%) and the control group (77.90%). Observations showed that treatment of DMSO resulted in an increase in the proportion of cells at G0/G1 phase for 48 h of culture. However, high levels of apoptotic cells can be detected after 48 h of culture treated with 1% concentration of DMSO.
    Reproduction in Domestic Animals 09/2009; 45(5):e73-7. · 1.18 Impact Factor

Full-text (2 Sources)

Available from
Aug 18, 2014