The CD3 gamma epsilon/delta epsilon signaling module provides normal T cell functions in the absence of the TCR zeta immunoreceptor tyrosine-based activation motifs.

Center for Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
European Journal of Immunology (Impact Factor: 4.97). 01/2006; 35(12):3643-54. DOI: 10.1002/eji.200535136
Source: PubMed

ABSTRACT T cell receptor (TCR) signal transduction is mediated by the immunoreceptor tyrosine-based activation motifs (ITAM). The ten ITAM in the TCR complex are distributed in two distinct signaling modules termed TCR zetazeta and CD3 gammaepsilon/deltaepsilon. To delineate the specific role of the zeta ITAM in T cell development and TCR signal transmission, we compared the properties of T cells from different TCR zeta-transgenic lines wherein tyrosine-to-phenylalanine substitutions had been introduced in the zeta subunit. These lines lack selected phosphorylated forms of TCR zeta including just p23, both p21 and p23, or all phospho-zeta derivatives. We report herein that the efficiency of positive selection in HY TCR-transgenic female mice was directly related to the number of zeta ITAM in the TCR. In contrast, TCR-mediated signal transmission and T cell proliferative responses following agonist peptide stimulation were similar and independent of the zeta ITAM. Only the duration of MAPK activation was affected by multiple zeta ITAM substitutions. These results strongly suggest that the ITAM in the CD3 gammaepsilon/deltaepsilon module can provide normal TCR signal transmission, with zeta ITAM providing a secondary function facilitating MAPK activation and positive selection.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Antigenic peptides initiate an immune response in T cells via the T cell receptor (TCR). The TCR itself is widely regarded as one of the most complex receptors in nature, as it is comprised of at least six different subunits, the antigen recognizing TCRalpha and beta chains, and the signal transmitting CD3deltavarepsilon, gammaepsilon, and zeta2 dimers. In order for a signal to be transmitted from the TCR to the cytoplasm, the CD3 chains must "sense" that an antigenic peptide has been presented to the TCRalpha and beta subunits. After accomplishing this, there are a total of 10 different immunoreceptor tyrosine activation motifs (ITAMs) present within the CD3 chains which effectively activate the T cell and hence the immune response. The importance of each CD3 chain and subsequently each ITAM has been the focus of intense research. However, the precise role(s) played by each CD3 chain has remained elusive. Using the immunomodulatory peptide termed core peptide (CP), which is proposed to inhibit TCR activation by disrupting TCR-CD3 interactions, a tri-modular signaling system for T cell activation is proposed. By contrast to the existing two distinct signaling model (zeta2, CD3epsilongamma/epsilondelta), in this model each of the three dimers, CD3gammaepsilon, deltaepsilon, and zeta2, are proposed to act as three separate and distinct signaling modules, performing both specific and redundant functions.
    Molecular Immunology 03/2008; 45(4):876-80. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. The T-cell receptor (TCR)-associated complex, CD3 (d, g, e) and z-chains are essential transmembrane proteins for signal transduction during T cell activation and immune response, as well as during thymocyte development. Objective. This work established the CD3e-chain primary structure for the New World owl monkey Aotus nancymaae. Materials and methods. Total RNA was isolated from peripheral blood mononuclear cells; CD3e molecule was amplified, cloned and sequenced. Results. The CD3e amino acid sequence was deduced for the owl monkey Aotus nancymaae. It has an identity for nucleotide and amino acid sequences with the human counterpart of 84% and 76%, respectively. As described in other species, the Aotus CD3-e molecule is very variable in the extracellular region and greatly conserved in the intracellular domain. Even though high variability occurs in the CD3e-extracellular domain, the subregions involved in ectodomain folding are conserved. Conclusions. The primary structure suggested that the Aotus protein has a functional role similar to that of humans, and that the initial T-cell activation steps are also similar. However, the great variation observed in CD3e-extracellular region in humans in contrast to the Aotus (especially in areas that are surface-exposed) indicated that some monoclonal antibodies against the human CD3 complex will not recognize these Aotus determinants.
    Biomédica: revista del Instituto Nacional de Salud 06/2008; 28(2):262-270. · 0.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune response testing of biomaterials is an essential component of biocompatibility assessment, particularly when the materials of interest are used to design bioresorbable scaffolds with the potential to promote in situ regeneration. Current trends in immune response testing of biomaterials typically examine few elements of the immune system, and they often undertake a mechanistic approach without first determining if material exposure results in physiologically relevant modulation of both innate and acquired immunity. Here, we present a comprehensive in vitro evaluation of biomaterial-induced modulation of acquired (i.e. cell-mediated and humoral) and innate immune responses following exposure to electrospun blends of polydioxanone (PDO) and elastin (ELAS). Results indicated that in vitro exposure of murine spleen cells to PDO–ELAS blends produced statistically significant immunosuppression in multiple cell-mediated and humoral endpoints. Results suggested that ELAS is the primary cause of cell-mediated immunosuppression. In contrast, PDO and ELAS were equally suppressive of humoral immune responses, while blends of the two were more immunosuppressive than either pure polymer alone. Evaluations of innate immune responses demonstrated few significant effects, with statistically significant immunosuppression observed in natural killer cell activity but not in macrophage functional assays. This work presents an approach for assessing potential modulation of immune responses resulting from exposure to biomaterials, and such evaluations are essential to obtaining comprehensive assessments of biocompatibility.
    Biomaterials 01/2009; · 8.31 Impact Factor