Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat.

Divisions of Applied Biosciences and Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2005; 102(45):16490-5. DOI: 10.1073/pnas.0505156102
Source: PubMed

ABSTRACT Hexaploid wheat (Triticum aestivum) accumulates benzoxazinones (Bxs) as defensive compounds. Previously, we found that five Bx biosynthetic genes, TaBx1-TaBx5, are located on each of the three genomes (A, B, and D) of hexaploid wheat. In this study, we isolated three homoeologous cDNAs of each TaBx gene to estimate the contribution of individual homoeologous TaBx genes to the biosynthesis of Bxs in hexaploid wheat. We analyzed their transcript levels by homoeolog- or genome-specific quantitative RT-PCR and the catalytic properties of their translation products by kinetic analyses using recombinant TaBX enzymes. The three homoeologs were transcribed differentially, and the ratio of the individual homoeologous transcripts to total homoeologous transcripts also varied with the tissue, i.e., shoots or roots, as well as with the developmental stage. Moreover, the translation products of the three homoeologs had different catalytic properties. Some TaBx homoeologs were efficiently transcribed, but the translation products showed only weak enzymatic activities, which inferred their weak contribution to Bx biosynthesis. Considering the transcript levels and the catalytic properties collectively, we concluded that the homoeologs on the B genome generally contributed the most to the Bx biosynthesis in hexaploid wheat, especially in shoots. In tetraploid wheat and the three diploid progenitors of hexaploid wheat, the respective transcript levels of the TaBx homoeologs were similar in ratio to those observed in hexaploid wheat. This result indicates that the genomic bias in the transcription of the TaBx genes in hexaploid wheat originated in the diploid progenitors and has been retained through the polyploidization.

Download full-text


Available from: Atsushi Ishihara, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wheat-rye translocations are widely used in wheat breeding to confer resistance against abiotic and biotic stress. Studying gene expression in wheat-rye translocations is complicated due to the presence of homoeologous genes in hexaploid wheat and high levels of synteny between wheat and rye chromatin. To distinguish transcripts expressed from each of the three wheat genomes and those from rye chromatin, genomic probes generated from diploid progenitors of wheat and rye were synthesized on a custom array. A total of 407 transcripts showed homoeologous genome (‘A’, ‘B’ or ‘D’ genome)- or rye genome (‘R’)-specific differential expression, based on unequal values of probe hybridization. In a 2BS.2RL wheat-rye translocation, thirteen of the 407 transcripts showed preferential expressions from rye chromatin. As well as quantifying variation in homoeologous transcript in wheat-rye translocations, this study also provides a potential aid to examine the contribution of the subgenomes to complex allohexapolyploids.
    Genes & Genetic Systems 02/2015; 89(4):159-168. DOI:10.1266/ggs.89.159 · 0.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat, as well as in other polyploid plants. However, the mechanisms underlying this phenomenon are poorly understood. Expansin genes play important roles in the regulation of cell size, as well as organ size. We found that all three TaEXPA1 homoeologs were silenced in seedling roots. In seedling leaves, TaEXPA1-A and TaEXPA1-D were expressed, but TaEXPA1-B was silenced. Further analysis revealed that silencing of TaEXPA1-B in leaves occurred after the formation of the hexaploid. Chromatin immunoprecipitation assays revealed that the transcriptional silencing of three TaEXPA1 homoeologs in roots was correlated with an increased level of H3K9 dimethylation and decreased levels of H3K4 trimethylation and H3K9 acetylation. Reactivation of TaEXPA1-A and TaEXPA1-D expression in leaves was correlated with increased levels of H3K4 trimethylation and H3K9 acetylation, and decreased levels of H3K9 dimethylation in their promoters, respectively. Moreover, a higher level of cytosine methylation was detected in the promoter region of TaEXPA1-B, which may contribute to its silencing in leaves. We demonstrated that epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development.
    New Phytologist 01/2013; DOI:10.1111/nph.12131 · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cycles of whole genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and the model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, thirty five percent of these gene structure rearrangements resulted in frameshift mutations and premature termination codons (PTCs). An increased codon mutation rate in the wheat lineage compared to Brachypodium was found for 17% of orthologs. Discovery of PTCs in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence (42%) between the duplicated homoeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, non-synonymous mutations and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variation, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.
    Plant physiology 11/2012; DOI:10.1104/pp.112.205161 · 7.39 Impact Factor