Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation.

Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA.
European Journal of Neuroscience (Impact Factor: 3.67). 11/2005; 22(8):1942-50. DOI: 10.1111/j.1460-9568.2005.04391.x
Source: PubMed

ABSTRACT Abnormal hyperphosphorylation of tau is believed to lead to neurofibrillary degeneration in Alzheimer's disease (AD) and other tauopathies. Recent studies have shown that protein phosphatases (PPs) PP1, PP2A, PP2B and PP5 dephosphorylate tau in vitro, but the exact role of each of these phosphatases in the regulation of site-specific phosphorylation of tau in the human brain was unknown. Hence, we investigated the contributions of these PPs to the regulation of tau phosphorylation quantitatively. We found that these four phosphatases all dephosphorylated tau at Ser199, Ser202, Thr205, Thr212, Ser214, Ser235, Ser262, Ser396, Ser404 and Ser409, but with different efficiencies toward different sites. The K(m) values of tau dephosphorylation catalysed by PP1, PP2A and PP5 were 8-12 microm, similar to the intraneuronal tau concentration of human brain, whereas the K(m) of PP2B was fivefold higher. PP2A, PP1, PP5 and PP2B accounted for approximately 71%, approximately 11%, approximately 10% and approximately 7%, respectively, of the total tau phosphatase activity of human brain. The total phosphatase activity and the activities of PP2A and PP5 toward tau were significantly decreased, whereas that of PP2B was increased in AD brain. PP2A activity negatively correlated to the level of tau phosphorylation at the most phosphorylation sites in human brains. Our findings indicate that PP2A is the major tau phosphatase that regulates its phosphorylation at multiple sites in human brain. The abnormal hyperphosphorylation of tau is partially due to a downregulation of PP2A activity in AD brain.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: HuntingtonÕs disease (HD) is an autosomal dominant neurodegenerative disorder caused by polyglutamine expansions in the amino-terminal region of the huntingtin (Htt) protein. At the cellular level, neuronal death is accompanied by the proteolytic cleavage, misfolding, and aggregation of huntingtin. Abnormal hyperphosphorylation of tau protein is a characteristic feature of a class of neurodegenerative diseases called tauopathies. As a number of studies have reported tau pathology in HD patients, we investigated whether HD pathology may promote tau hyperphosphorylation and if so, tackle some of its underlying mechanisms. For that purpose, we used the R6/2 mouse, a well characterized model of HD, and analyzed tau phosphorylation before and after the onset of HD-like symptoms. We found a significant increase in tau hyperphosphorylation at the PHF-1 epitope in pre-symptomatic R6/2 mice, while symptomatic mice displayed tau hyperphosphorylation at multiple tau phospho-epitopes (AT8, CP13, PT205, PHF-1). There was no activation of major tau kinases that could explain this observation. However, when we examined tau phosphatases, we found that calcineurin/PP2B was downregulated by 30% in pre-symptomatic and 50% in symptomatic R6/2 mice, respectively. We observed similar changes in tau phosphorylation and calcineurin expression in Q175 mice, another HD model. Calcineurin was also reduced in Q111 compared to Q7 cells. Finally, pharmacological or genetic inhibition of endogenous calcineurin was sufficient to promote tau hyperphosphorylation in neuronal cells. Taken together, our data suggest that mutant huntingtin can induce abnormal tau hyperphosphorylation in vivo, via the deregulation of calcineurin.
    Human Molecular Genetics 09/2014; DOI:10.1093/hmg/ddu456 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic cerebral hypoperfusion (CCH) is a common consequence of various cerebral vascular disorders and hemodynamic and blood changes. Recent studies have revealed an important role of CCH in neurodegeneration and dementia, including vascular dementia and Alzheimer's disease (AD). This article reviews the recent advances in understanding CCH-induced neurodegeneration and AD-related brain pathology and cognitive impairment. We discuss the causes and assessment of CCH, the possible mechanisms by which CCH promotes Alzheimer-like pathology and neurodegeneration, and animal models of CCH. It appears that CCH promotes neurodegeneration and AD through multiple mechanisms, including induction of oxidative stress, Aβ accumulation and aggravation, tau hyperphosphorylation, synaptic dysfunction, neuronal loss, white matter lesion, and neuroinflammation. Better understanding of the mechanisms of CCH will help develop therapeutic strategies for preventing and treating neurodegeneration, including sporadic AD and vascular dementia, caused by CCH.
    Cellular and Molecular Neurobiology 10/2014; 35(1). DOI:10.1007/s10571-014-0127-9 · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important challenge in the field of Parkinson's disease (PD) is to develop disease modifying therapies capable of stalling or even halting disease progression. Coupled to this challenge is the need to identify disease biomarkers, in order to identify pre-symptomatic hallmarks of disease and monitor disease progression. The answer to these challenges lies in the elucidation of the molecular causes underlying PD, for which important leads are disease genes identified in studies investigating the underlying genetic causes of PD. LRRK2 and α-syn have been both linked to familial forms of PD as well as associated to sporadic PD. Another gene, microtubule associated protein tau (MAPT), has been genetically linked to a dominant form of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and genome-wide association studies report a strong association between MAPT and sporadic PD. Interestingly, LRRK2, α-syn, and tau are all phosphorylated proteins, and their phosphorylation patterns are linked to disease. In this review, we provide an overview of the evidence linking LRRK2, α-syn, and tau phosphorylation to PD pathology and focus on studies which have identified phosphatases responsible for dephosphorylation of pathology-related phosphorylations. We also discuss how the LRRK2, α-syn, and tau phosphatases may point to separate or cross-talking pathological pathways in PD. Finally, we will discuss how the study of phosphatases of dominant Parkinsonism proteins opens perspectives for targeting pathological phosphorylation events.
    Frontiers in Genetics 11/2014; 5:382. DOI:10.3389/fgene.2014.00382


Available from
May 27, 2014