Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma

University of Alabama at Birmingham, Birmingham, Alabama, United States
Cancer Research (Impact Factor: 9.33). 12/2005; 65(21):10041-9. DOI: 10.1158/0008-5472.CAN-05-1383
Source: PubMed


Myeloma vaccines, based on dendritic cells pulsed with idiotype or tumor lysate, have been met with limited success, probably in part due to insufficient cross-priming of myeloma antigens. A powerful method to introduce myeloma-associated antigens into the cytosol of dendritic cells is protein transduction, a process by which proteins fused with a protein transduction domain (PTD) freely traverse membrane barriers. NY-ESO-1, an immunogenic antigen by itself highly expressed in 60% of high-risk myeloma patients, was purified to near homogeneity both alone and as a recombinant fusion protein with a PTD, derived from HIV-Tat. Efficient entry of PTD-NY-ESO-1 into dendritic cells, confirmed by microscopy, Western blotting, and intracellular flow cytometry, was achieved without affecting dendritic cell phenotype. Experiments with amiloride, which inhibits endocytosis, and N-acetyl-l-leucinyl-l-norleucinal, a proteasome inhibitor, confirmed that PTD-NY-ESO-1 entered dendritic cells by protein transduction and was degraded by the proteasome. Tetramer analysis indicated superior generation of HLA-A2.1, CD8+ T lymphocytes specific for NY-ESO-1(157-165) with PTD-NY-ESO-1 compared with NY-ESO-1 control protein (44% versus 2%, respectively). NY-ESO-1-specific T lymphocytes generated with PTD-NY-ESO-1 secreted IFN-gamma indicative of a Tc1-type cytokine response. Thus, PTD-NY-ESO-1 accesses the cytoplasm by protein transduction, is processed by the proteasome, and NY-ESO-1 peptides presented by HLA class I elicit NY-ESO-1-specific T lymphocytes.

4 Reads
  • Source
    • "T cells from myeloma patients can recognize a variety of TAAs, which suggesting that the T cell has the capacity to kill myeloma cells selectively if these clonal populations can be activated and expanded effectively by a potent TAA. Many potential TAAs in MM have been investigated including polymorphic epithelial mucin (MUC1), human telomerase reverse transcriptase (hTERT), PRAME, HM1.24, SP17, Wilms' tumor I (WTI), Dickkopf-1 (DKK1), or member of cancer germ-like family (MAGE, GAGE, BAGE, LAGE, NY-ESO-1) [30–35]. Among the various TAAs, some have been tested as peptide vaccines and only a few of them has been tested in vitro to induce TAA-specific CTLs response via loading the potent TAA to DCs in MM. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma (MM) is a good target disease in which one can apply cellular immunotherapy, which is based on the graft-versus-myeloma effect. This role of immune effector cells provides the framework for the development of immune-based therapeutic options that use antigen-presenting cells (APCs) with increased potency, such as dendritic cells (DCs), in MM. Current isolated idiotype (Id), myeloma cell lysates, myeloma dying cells, DC-myeloma hybrids, or DC transfected with tumor-derived RNA has been used for immunotherapy with DCs. Immunological inhibitory cytokines, such as TGF-β, IL-10, IL-6 and VEGF, which are produced from myeloma cells, can modulate antitumor host immune response, including the abrogation of DC function, by constitutive activation of STAT3. Therefore, even the immune responses have been observed in clinical trials, the clinical response was rarely improved following DC vaccinations in MM patients. We are going to discuss how to improve the efficacy of DC vaccination in MM.
    Clinical and Developmental Immunology 03/2012; 2012(18):397648. DOI:10.1155/2012/397648 · 2.93 Impact Factor
  • Source
    • "Spontaneous humoral and CD8+ T cell-mediated responses to NY-ESO-1 have been identified in patients with advanced disease [38]. In addition, in vitro monocyte-derived DCs transfected with PTD-NY-ESO-1 protein can induce CD8+ cellular antitumor immunity superior to that achieved with NY-ESO-1 protein alone [39]. Sp17-specific HLA class I-restricted CTLs were successfully generated by DCs that had been loaded with recombinant Sp17 protein and were able to kill autologous tumor cells that expressed Sp17 [40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated. DC-based therapies against MM may need to be boosted with other sources of tumor-associated antigens, and potent DCs should be recruited to increase the effectiveness of treatment. DCs with both high migratory capacity and high cytokine production are very important for effective DC-based cancer vaccination in order to induce high numbers of Th1-type CD4(+) T cells and CD8(+) cytotoxic T lymphocytes. The tumor microenvironment is also important in the regulation of tumor cell growth, proliferation, and the development of therapeutic resistance after treatment. In this review, we discuss how the efficacy of DC vaccination in MM can be improved. In addition, novel treatment strategies that target not only myeloma cells but also the tumor microenvironment are urgently needed to improve treatment outcomes.
    The Korean journal of hematology 03/2012; 47(1):17-27. DOI:10.5045/kjh.2012.47.1.17
  • Source
    • "In addition, CPPs have also been used in vaccine designing (15). Tat peptide has been used for delivery of tumor associated cancer antigen in antigen presenting cells (16, 17). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Delivering drug molecules into the cell is one of the major challenges in the process of drug development. In past, cell penetrating peptides have been successfully used for delivering a wide variety of therapeutic molecules into various types of cells for the treatment of multiple diseases. These peptides have unique ability to gain access to the interior of almost any type of cell. Due to the huge therapeutic applications of CPPs, we have built a comprehensive database ‘CPPsite’, of cell penetrating peptides, where information is compiled from the literature and patents. CPPsite is a manually curated database of experimentally validated 843 CPPs. Each entry provides information of a peptide that includes ID, PubMed ID, peptide name, peptide sequence, chirality, origin, nature of peptide, sub-cellular localization, uptake efficiency, uptake mechanism, hydrophobicity, amino acid frequency and composition, etc. A wide range of user-friendly tools have been incorporated in this database like searching, browsing, analyzing, mapping tools. In addition, we have derived various types of information from these peptide sequences that include secondary/tertiary structure, amino acid composition and physicochemical properties of peptides. This database will be very useful for developing models for predicting effective cell penetrating peptides. Database URL:
    Database The Journal of Biological Databases and Curation 01/2012; 2012:bas015. DOI:10.1093/database/bas015 · 3.37 Impact Factor
Show more

Similar Publications


4 Reads
Available from