Article

Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma

University of Alabama at Birmingham, Birmingham, Alabama, United States
Cancer Research (Impact Factor: 9.28). 12/2005; 65(21):10041-9. DOI: 10.1158/0008-5472.CAN-05-1383
Source: PubMed

ABSTRACT Myeloma vaccines, based on dendritic cells pulsed with idiotype or tumor lysate, have been met with limited success, probably in part due to insufficient cross-priming of myeloma antigens. A powerful method to introduce myeloma-associated antigens into the cytosol of dendritic cells is protein transduction, a process by which proteins fused with a protein transduction domain (PTD) freely traverse membrane barriers. NY-ESO-1, an immunogenic antigen by itself highly expressed in 60% of high-risk myeloma patients, was purified to near homogeneity both alone and as a recombinant fusion protein with a PTD, derived from HIV-Tat. Efficient entry of PTD-NY-ESO-1 into dendritic cells, confirmed by microscopy, Western blotting, and intracellular flow cytometry, was achieved without affecting dendritic cell phenotype. Experiments with amiloride, which inhibits endocytosis, and N-acetyl-l-leucinyl-l-norleucinal, a proteasome inhibitor, confirmed that PTD-NY-ESO-1 entered dendritic cells by protein transduction and was degraded by the proteasome. Tetramer analysis indicated superior generation of HLA-A2.1, CD8+ T lymphocytes specific for NY-ESO-1(157-165) with PTD-NY-ESO-1 compared with NY-ESO-1 control protein (44% versus 2%, respectively). NY-ESO-1-specific T lymphocytes generated with PTD-NY-ESO-1 secreted IFN-gamma indicative of a Tc1-type cytokine response. Thus, PTD-NY-ESO-1 accesses the cytoplasm by protein transduction, is processed by the proteasome, and NY-ESO-1 peptides presented by HLA class I elicit NY-ESO-1-specific T lymphocytes.

0 Followers
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite high-dose chemotherapy followed by autologous stem-cell transplantation as well as novel therapeutic agents, multiple myeloma (MM) remains incurable. Following the general trend towards personalized therapy, targeted immunotherapy as a new approach in the therapy of MM has emerged. Better progression-free survival and overall survival after tandem autologous/allogeneic stem cell transplantation suggest a graft versus myeloma effect strongly supporting the usefulness of immunological therapies for MM patients. How to induce a powerful anti-myeloma effect is the key issue in this field. Pivotal is the definition of appropriate tumor antigen targets and effective methods for expansion of T cells with clinical activity. Besides a comprehensive list of tumor antigens for T cell-based approaches, eight promising antigens, CS1, Dickkopf-1, HM1.24, Human telomerase reverse transcriptase, MAGE-A3, New York Esophageal-1, Receptor of hyaluronic acid mediated motility and Wilms’ tumor gene 1, are described in detail to provide a background for potential clinical use. Results from both closed and on-going clinical trials are summarized in this review. Based on the pre-clinical and clinical data, we elaborate on three encouraging therapeutic options, vaccine-enhanced donor lymphocyte infusion, chimeric antigen receptors–transfected T cells as well as vaccines with multiple antigen peptides, to pave the way towards clinically significant immune responses against MM. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 09/2014; 136(8). DOI:10.1002/ijc.29190 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both "passive" (e.g. strategies relying on the administration of specific T cells) and "active" vaccines (e.g. peptide-directed or whole-cell vaccines) have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines) are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target "immunosuppressive checkpoints" (anti-CTLA-4, PD-1, etc.) is likely to improve and maintain immune response induced by vaccination.
    10/2014; 5(4):e0024. DOI:10.5041/RMMJ.10158

Preview

Download
1 Download
Available from