Rhesus monkey alpha7 nicotinic acetylcholine receptors: comparisons to human alpha7 receptors expressed in Xenopus oocytes.

Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, 32610, USA.
European Journal of Pharmacology (Impact Factor: 2.68). 12/2005; 524(1-3):11-8. DOI: 10.1016/j.ejphar.2005.08.043
Source: PubMed

ABSTRACT An alpha7 nicotinic acetylcholine receptor sequence was cloned from Rhesus monkey (Macaca mulatta). This clone differs from the mature human alpha7 nicotinic acetylcholine receptor in only four amino acids, two of which are in the extracellular domain. The monkey alpha7 nicotinic receptor was characterized in regard to its functional responses to acetylcholine, choline, cytisine, and the experimental alpha7-selective agonists 4OH-GTS-21, TC-1698, and AR-R17779. For all of these agonists, the EC(50) for activation of monkey receptors was uniformly higher than for human receptors. In contrast, the potencies of mecamylamine and MLA for inhibiting monkey and human alpha7 were comparable. Acetylcholine and 4OH-GTS-21 were used to probe the significance of the single point differences in the extracellular domain. Mutants with the two different amino acids in the extracellular domain of the monkey receptor changed to the corresponding sequence of the human receptor had responses to these agonists that were not significantly different in EC(50) from wild-type human alpha7 nicotinic receptors. Monkey alpha7 nicotinic receptors have a serine at residue 171, while the human receptors have an asparagine at this site. Monkey S171N mutants were more like human alpha7 nicotinic receptors, while mutations at the other site (K186R) had relatively little effect. These experiments point toward the basic utility of the monkey receptor as a model for the human alpha7 nicotinic receptor, albeit with the caveat that these receptors will vary in their agonist concentration dependency. They also point to the potential importance of a newly identified sequence element for modeling the specific amino acids involved with receptor activation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-clamp techniques are typically used to study the plasma membrane proteins, such as ion channels and transporters that control bioelectrical signals. Many of these proteins have been cloned and can now be studied as potential targets for drug development. The two approaches most commonly used for heterologous expression of cloned ion channels and transporters involve either transfection of the genes into small cells grown in tissue culture or the injection of the genetic material into larger cells. The standard large cells used for the expression of cloned cDNA or synthetic RNA are the egg progenitor cells (oocytes) of the African frog, Xenopus laevis. Until recently, cellular electrophysiology was performed manually by a single operator, one cell at a time. However, methods of high throughput electrophysiology have been developed which are automated and permit data acquisition and analysis from multiple cells in parallel. These methods are breaking a bottleneck in drug discovery, useful in some cases for primary screening as well as for thorough characterization of new drugs. Increasing throughput of high-quality functional data greatly augments the efficiency of academic research and pharmaceutical drug development. Some examples of studies that benefit most from high throughput electrophysiology include pharmaceutical screening of targeted compound libraries, secondary screening of identified compounds for subtype selectivity, screening mutants of ligand-gated channels for changes in receptor function, scanning mutagenesis of protein segments, and mutant-cycle analysis. We describe here the main features and potential applications of OpusXpress, an efficient commercially available system for automated recording from Xenopus oocytes. We show some types of data that have been gathered by this system and review realized and potential applications.
    Combinatorial chemistry & high throughput screening 12/2009; 12(1):38-50. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.
    PLoS ONE 01/2014; 9(4):e94142. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE Deficient cerebral inhibition is a pathophysiological brain deficit related to poor sensory gating and attention in schizophrenia and other disorders. Cerebral inhibition develops perinatally, influenced by genetic and in utero factors. Amniotic choline activates fetal α7-nicotinic acetylcholine receptors and facilitates development of cerebral inhibition. Increasing this activation may protect infants from future illness by promoting normal brain development. The authors investigated the effects of perinatal choline supplementation on the development of cerebral inhibition in human infants. METHOD A randomized placebo-controlled clinical trial of dietary phosphatidylcholine supplementation was conducted with 100 healthy pregnant women, starting in the second trimester. Supplementation to twice normal dietary levels for mother or newborn continued through the third postnatal month. All women received dietary advice regardless of treatment. Infants' electrophysiological recordings of inhibition of the P50 component of the cerebral evoked response to paired sounds were analyzed. The criterion for inhibition was suppression of the amplitude of the second P50 response by at least half, compared with the first response. RESULTS No adverse effects of choline were observed in maternal health and delivery, birth, or infant development. At the fifth postnatal week, the P50 response was suppressed in more choline-treated infants (76%) compared with placebo-treated infants (43%) (effect size=0.7). There was no difference at the 13th week. A CHRNA7 genotype associated with schizophrenia was correlated with diminished P50 inhibition in the placebo-treated infants, but not in the choline-treated infants. CONCLUSIONS Neonatal developmental delay in inhibition is associated with attentional problems as the child matures. Perinatal choline activates timely development of cerebral inhibition, even in the presence of gene mutations that otherwise delay it.
    American Journal of Psychiatry 01/2013; · 14.72 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014