Article

The KRAS oncogene: past, present, and future.

Department of Surgery, University Medical Center Utrecht, Utrecht.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 12/2005; 1756(2):81-2. DOI: 10.1016/j.bbcan.2005.10.001
Source: PubMed
3 Followers
 · 
272 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KRAS gene is the most common locus for somatic gain-of-function mutations in human cancer. Germline KRAS mutations were shown recently to be associated with developmental disorders, including Noonan syndrome (NS), cardio-facio-cutaneous syndrome (CFCS), and Costello syndrome (CS). The molecular basis of this broad phenotypic variability has in part remained elusive so far. Here, we comprehensively analyzed the biochemical and structural features of ten germline KRAS mutations using physical and cellular biochemistry. According to their distinct biochemical and structural alterations, the mutants can be grouped into five distinct classes, four of which markedly differ from RAS oncoproteins. Investigated functional alterations comprise the enhancement of intrinsic and guanine nucleotide exchange factor (GEF) catalyzed nucleotide exchange, which is alternatively accompanied by an impaired GTPase-activating protein (GAP) stimulated GTP hydrolysis, an overall loss of functional properties, and a deficiency in effector interaction. In conclusion, our data underscore the important role of RAS in the pathogenesis of the group of related disorders including NS, CFCS, and CS, and provide clues to the high phenotypic variability of patients with germline KRAS mutations.
    Human Mutation 01/2011; 32(1):33-43. DOI:10.1002/humu.21377 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.
    BioMed Research International 06/2010; 2010:150960. DOI:10.1155/2010/150960 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a variety of cellular functions such as growth, proliferation and autophagy. In a variety of cancer cells, overactivation of mTOR has been reported. In addition, mTOR inhibitors, such as rapamycin and its derivatives, are being evaluated in clinical trials as anticancer drugs. However, no active mutants of mTOR have been identified in human cancer. Here, we report that two different point mutations, S2215Y and R2505P, identified in human cancer genome database confer constitutive activation of mTOR signaling even under nutrient starvation conditions. S2215Y was identified in large intestine adenocarcinoma whereas R2505P was identified in renal cell carcinoma. mTOR complex 1 prepared from cells expressing the mutant mTOR after nutrient starvation still retains the activity to phosphorylate 4E-BP1 in vitro. The cells expressing the mTOR mutant show increased percentage of S-phase cells and exhibit resistance to cell size decrease by amino-acid starvation. The activated mutants are still sensitive to rapamycin. However, they show increased resistance to 1-butanol. Our study points to the idea that mTOR activating mutations can be identified in a wide range of human cancer.
    Oncogene 03/2010; 29(18):2746-52. DOI:10.1038/onc.2010.28 · 8.56 Impact Factor