Cholesterol Depletion Induces Solid-like Regions in the Plasma Membrane

Department of Chemistry, Molecular and Cellular Physiology, and Biophysics Program, Stanford University, Stanford, California 94305-5080, USA.
Biophysical Journal (Impact Factor: 3.83). 02/2006; 90(3):927-38. DOI: 10.1529/biophysj.105.070524
Source: PubMed

ABSTRACT Glycosylphosphatidylinositol-linked and transmembrane major histocompatibility complex (MHC) class II I-E(k) proteins, as well as N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Tritc-DHPE), are used as probes to determine the effect of cholesterol concentration on the organization of the plasma membrane at temperatures in the range 22 degrees C-42 degrees C. Cholesterol depletion caused a decrease in the diffusion coefficients for the MHC II proteins and also for a slow fraction of the Tritc-DHPE population. At 37 degrees C, reduction of the total cell cholesterol concentration results in a smaller suppression of the translational diffusion for I-E(k) proteins (twofold) than was observed in earlier work at 22 degrees C (five sevenfold) Vrljic, M., S. Y. Nishimura, W. E. Moerner, and H. M. McConnell. 2005. Biophys. J. 88:334-347. At 37 degrees C, the diffusion of both I-E(k) proteins is Brownian (0.9 < alpha-parameter < 1.1). More than 99% of the protein population diffuses homogeneously when imaged at 65 frames per s. As the temperature is raised from 22 degrees C to 42 degrees C, a change in activation energy is seen at approximately 35 degrees C in the Arrhenius plots. Cytoskeletal effects appear to be minimal. These results are consistent with a previously described model of solid-like domain formation in the plasma membrane.

Download full-text


Available from: Harden Marsden Mcconnell, Jul 04, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of the diffusion of proteins and lipids in the plasma membrane of cells have long pointed to the presence of membrane domains. A major challenge in the field of membrane biology has been to characterize the various cellular structures and mechanisms that impede free diffusion in cell membranes and determine the consequences that membrane compartmentalization has on cellular biology. In this review, we will provide a brief summary of the classes of domains that have been characterized to date, focusing on recent efforts to identify the properties of lipid rafts in cells through measurements of protein and lipid diffusion.
    Biochimica et Biophysica Acta 01/2009; 1788(1-1788):245-253. DOI:10.1016/j.bbamem.2008.10.024
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single molecule techniques promise novel information about the properties and behavior of individual particles, thus enabling access to molecular heterogeneities in biological systems. Their recent developments to accommodate membrane studies have significantly deepened the understanding of membrane proteins. In this short review, we will describe the basics of the three most common single-molecule techniques used on membrane proteins: fluorescence correlation spectroscopy, single particle tracking, and atomic force microscopy. We will discuss the most relevant findings made during the recent years and their contribution to the membrane protein field.
    Applied Microbiology and Biotechnology 09/2007; 76(2):257-66. DOI:10.1007/s00253-007-1007-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cholesterol has been shown to regulate the activity of several membrane proteins. Although this phenomenon represents an important factor in the regulation of ion homeostasis, insights are needed to fully understand the role of this lipid in cell function in order to better comprehend the effect of bilayer components upon membrane function. Since evolution has shaped the composition of the membrane bilayer, it becomes of interest to study these changes in parallel with the many functions of membranes such as ion transport. The present study employing a plasma membrane preparation obtained from calf ventricular muscle demonstrates that cholesterol partially inhibits the Ca(2+),Mg(2+)-ATPase as the catalytic function of the calcium pump, when incubation reaction temperatures are below 42 degrees C. In contrast, when incubation reaction temperatures are above 42 degrees C, cholesterol apparently promotes enzyme stabilization reflected in higher activity. Although the activation energy values for the enzyme are almost the same at ranges between 15 and 40 degrees C, the use of elevated temperatures promote higher enzyme inactivation rates in control than in cholesterol enriched membranes. Cholesterol apparently is promoting stabilization that in turn protects the enzyme against thermal inactivation. This protective effect is reflected in a decrease of inactivation rate values and energy released during enzyme catalysis. The modification of many membrane properties throughout million of years made it possible for new evolutionary driving forces to show themselves as new characteristics in eukaryotes such as the one discussed in this study, dealing with the presence of cholesterol in the cell membrane directly associated to the promotion of protein thermostability.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 07/2007; 146(1-2):207-13. DOI:10.1016/j.cbpc.2006.09.007