Article

The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson's disease and originates from a common ancestor.

Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy.
Journal of Medical Genetics (Impact Factor: 5.64). 11/2005; 42(11):e65. DOI: 10.1136/jmg.2005.035568
Source: PubMed

ABSTRACT Mutations in the gene Leucine-Rich Repeat Kinase 2 (LRRK2) were recently identified as the cause of PARK8 linked autosomal dominant Parkinson's disease.
To study recurrent LRRK2 mutations in a large sample of patients from Italy, including early (<50 years) and late onset familial and sporadic Parkinson's disease.
Among 629 probands, 13 (2.1%) were heterozygous carriers of the G2019S mutation. The mutation frequency was higher among familial (5.1%, 9/177) than among sporadic probands (0.9%, 4/452) (p<0.002), and highest among probands with one affected parent (8.7%, 6/69) (p<0.001). There was no difference in the frequency of the G2019S mutation in probands with early v late onset disease. Among 600 probands, one heterozygous R1441C but no R1441G or Y1699C mutations were detected. None of the four mutations was found in Italian controls. Haplotype analysis in families from five countries suggested that the G2019S mutation originated from a single ancient founder. The G2019S mutation was associated with the classical Parkinson's disease phenotype and a broad range of onset age (34 to 73 years).
G2019S is the most common genetic determinant of Parkinson's disease identified so far. It is especially frequent among cases with familial Parkinson's disease of both early and late onset, but less common among sporadic cases. These findings have important implications for diagnosis and genetic counselling in Parkinson's disease.

Full-text

Available from: Angelo Antonini, Jun 06, 2015
0 Followers
 · 
163 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson’s disease (PD) is characterised by a progressive loss of dopaminergic neurones from the SNpc, leading to numerous downstream changes in the basal ganglia circuitry. Overactivity of the glutamatergic subthalamonigral pathway may underlie this continual degeneration of the nigrostriatal system. With this in mind, this thesis examined whether selective activation of group III metabotropic glutamate receptor subtypes may offer a novel strategy to halt persistent degeneration in PD. Initial distribution studies revealed mGlu4 and 7 group III mGlu receptor subtypes, demonstrated particularly intense immunoreactivity in the SNpc, suggesting these receptors may be ideally positioned to provide neuroprotective effects. Therefore, the first objective was to confirm this neuroprotective possibility using a broad spectrum agonist, L-AP4. Sub-chronic supranigral L-AP4 treatment mediated functional neuroprotection against a unilateral 6-OHDA lesion of the SN, confirmed by behavioural assessment and post-mortem analyses. Secondly, the pharmacological identity of the group III mGlu receptor mediating this protective effect was examined. To investigate mGlu4 receptors, the novel mGlu4 selective PAM VU0155041, was also shown to provide functional neuroprotection in the 6-OHDA rat model to an almost comparable level reached with L-AP4. Whilst these neuroprotective effects are likely mediated by an inhibition of glutamate to protect from glutamate-mediated excitotoxicity, VU015504 also led to a significant reduction in levels of GFAP and IBA-1 suggesting an additional anti-inflammatory action. Further studies revealed little evidence for co-localisation of mGlu4 receptors with GFAP in the SN suggesting this anti-inflammatory component likely reflects an indirect effect via stimulation of neuronal mGlu4 receptors. Finally, to investigate mGlu7 receptors, the selective allosteric agonist AMN082, was also shown to protect the nigrostriatal tract and demonstrate a degree of preservation of motor function. In contrast, mGlu8 receptor activation using the selective agonist DCPG, failed to protect the nigrostriatal tract or preserve motor behaviour. Collectively, these findings demonstrate that, of the group III mGlu receptors investigated, mGlu4 offers the most potential as a promising target for establishing disease modification in PD.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response. © 2015 by the Society for Experimental Biology and Medicine.
    Experimental Biology and Medicine 03/2015; DOI:10.1177/1535370215576313 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maintenance of cellular homeostasis is regulated by the molecular chaperones. Under pathogenic conditions, aberrant proteins are triaged by the chaperone network. These aberrant proteins, known as "clients," have major roles in the pathogenesis of numerous neurological disorders, including tau in Alzheimer's disease, α-synuclein and LRRK2 in Parkinson's disease, SOD-1, TDP-43 and FUS in amyotrophic lateral sclerosis, and polyQ-expanded proteins such as huntingtin in Huntington's disease. Recent work has demonstrated that the use of chemical compounds which inhibit the activity of molecular chaperones subsequently alter the fate of aberrant clients. Inhibition of Hsp90 and Hsc70, two major molecular chaperones, has led to a greater understanding of how chaperone triage decisions are made and how perturbing the chaperone system can promote clearance of these pathogenic clients. Described here are major pathways and components of several prominent neurological disorders. Also discussed is how treatment with chaperone inhibitors, predominately Hsp90 inhibitors which are selective for a diseased state, can relieve the burden of aberrant client signaling in these neurological disorders.
    04/2013; 2013(Suppl 10). DOI:10.4172/2161-0460.S10-007