Article

Increased muscular challenge in older adults during obstructed gait.

Motion Analysis Laboratory, Department of Human Physiology, 1240 University of Oregon, Eugene, OR 97403, USA.
Gait & Posture (Impact Factor: 1.97). 01/2006; 22(4):356-61. DOI: 10.1016/j.gaitpost.2004.11.012
Source: PubMed

ABSTRACT Skeletal muscle strength is known to decline with age. Although lower extremity (LE) muscle strength is critical to maintaining dynamic stability, few studies have investigated lower extremity muscle challenge during activities of daily living. The purpose of this study was to investigate the effects of age and obstructed gait on relative lower extremity muscular challenge, with respect to available joint strength. Fifteen healthy young and fifteen healthy older adults were asked to walk over level ground and step over obstacles. Pre-amplified surface electrodes were used to measure bilateral muscular activation of the gluteus medius (GM), vastus lateralis (VL), and gastrocnemius (GA). Muscle activation signals were normalized to peak magnitudes collected during maximal manual muscle testing (MMT). Normalized magnitudes were analyzed during the double-support phase for gluteus medius and vastus lateralis and during the single-support phase for gastrocnemius. A two-factor ANOVA was used to test for age group effect, with repeated measure of obstacle height. In general, older adults demonstrated greater relative activation levels compared to young adults. Gluteus medius activity was significantly greater in the elderly as compared to young during periods of double-support (weight transfer). Increased obstacle height resulted in greater relative activation in all muscles, confirming the increased challenge to the musculo-skeletal system. While healthy elderly adults were able to successfully negotiate obstacles of different heights during walking, their muscular strength capacity was significantly lower than young adults, resulting in relatively higher muscular demands. The resulting potential for muscular fatigue during locomotion may place individuals at higher risk for trips and/or falls.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic falls are a prevalent and costly threat to elderly adults. Accurate risk assessment is necessary for reducing incidence of falls. The objective of this study was to test the feasibility of a balance impairment detection model using tasks of sample categorization and falls risk estimation. Model design included an artificial neural network and a statistical discrimination method. The first system produced an individual categorization value, which was then assessed in the second system for relative risk of falls, compared to a normative distribution of healthy elderly peers. Input data included leg muscle electromyographic amplitudes, temporal-distance measures of gait, and medio-lateral measures of whole body center of mass motion. These input data were compiled from a sample of healthy elderly adults (n = 19) and a sample with impaired balance (n = 10) to develop and test the model. Accuracy of sample categorization was assessed using a relative operating characteristic (ROC) value. For relative risk estimation, categorical delineation of risk level was adopted. Sample categorization results reached ROC values of 0.890. Relative risk was frequently assessed at high or very high risk for experiencing falls. Temporal-distance measures were most influential in categorization accuracy, producing the most consistent risk estimates. Combined inputs further improved model performance. This model shows potential for detecting balance impairment and estimating falls risk; thereby indicating need for referral for falls prevention intervention.
    Annals of Biomedical Engineering 07/2005; 33(6):811-20. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Older adults could not safely step over an obstacle unless they correctly estimated their physical ability to be capable of a successful step over action. Thus, incorrect estimation (overestimation) of ability to step over an obstacle could result in severe accident such as falls in older adults. We investigated whether older adults tended to overestimate step-over ability compared with young adults and whether such overestimation in stepping over obstacles was associated with falls. METHODS: Three groups of adults, young-old (age, 60--74 years; n, 343), old-old (age, >74 years; n, 151), and young (age, 18--35 years; n, 71), performed our original step-over test (SOT). In the SOT, participants observed a horizontal bar at a 7-m distance and estimated the maximum height (EH) that they could step over. After estimation, they performed real SOT trials to measure the actual maximum height (AH). We also identified participants who had experienced falls in the 1 year period before the study. RESULTS: Thirty-nine young-old adults (11.4%) and 49 old-old adults (32.5%) failed to step over the bar at EH (overestimation), whereas all young adults succeeded (underestimation). There was a significant negative correlation between actual performance (AH) and self-estimation error (difference between EH and AH) in the older adults, indicating that older adults with lower AH (SOT ability) tended to overestimate actual ability (EH > AH) and vice versa. Furthermore, the percentage of participants who overestimated SOT ability in the fallers (28%) was almost double larger than that in the non-fallers (16%), with the fallers showing significantly lower SOT ability than the non-fallers. CONCLUSIONS: Older adults appear unaware of age-related physical decline and tended to overestimate step-over ability. Both age-related decline in step-over ability, and more importantly, overestimation or decreased underestimation of this ability may raise potential risk of falls.
    BMC Geriatrics 05/2013; 13(1):44. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study multi-muscle synergies during preparation in making a step (self-paced level stepping vs. obstacle crossing stepping).
    European journal of applied physiology. 08/2014;

Full-text (2 Sources)

View
38 Downloads
Available from
May 22, 2014