Article

Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly.

Boston Biomedical Research Institute, Watertown, MA 02472, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2005; 102(46):16644-9. DOI: 10.1073/pnas.0507021102
Source: PubMed

ABSTRACT Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 (WH2) is a small and widespread actin-binding motif. In the WASP family, WH2 plays a role in filament nucleation by Arp2/3 complex. Here we describe the crystal structures of complexes of actin with the WH2 domains of WASP, WASP-family verprolin homologous protein, and WASP-interacting protein. Despite low sequence identity, WH2 shares structural similarity with the N-terminal portion of the actin monomer-sequestering thymosin beta domain (Tbeta). We show that both domains inhibit nucleotide exchange by targeting the cleft between actin subdomains 1 and 3, a common binding site for many unrelated actin-binding proteins. Importantly, WH2 is significantly shorter than Tbeta but binds actin with approximately 10-fold higher affinity. WH2 lacks a C-terminal extension that in Tbeta4 becomes involved in monomer sequestration by interfering with intersubunit contacts in F-actin. Owing to their shorter length, WH2 domains connected in tandem by short linkers can coexist with intersubunit contacts in F-actin and are proposed to function in filament nucleation by lining up actin subunits along a filament strand. The WH2-central region of WASP-family proteins is proposed to function in an analogous way by forming a special class of tandem repeats whose function is to line up actin and Arp2 during Arp2/3 nucleation. The structures also suggest a mechanism for how profilin-binding Pro-rich sequences positioned N-terminal to WH2 could feed actin monomers directly to WH2, thereby playing a role in filament elongation.

0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several cellular processes rely on the fine tuning of actin cytoskeleton. A central component in the regulation of this cellular machinery is the ADF-H domain proteins. Despite sharing the same domain, ADF-H domain proteins produce a diverse functional landscape in the regulation of the actin cytoskeleton. Recent findings emphasize that the functional and structural features of these proteins can differ not only between ADF-H families but even within the same family. The structural and evolutional background of this functional diversity is poorly understood. This review focuses on the specific functional characteristics of ADF-H domain proteins and how these features can be linked to structural differences in the ADF-H domain and also to different conformational transitions in actin. In the light of recent discoveries we pay special attention to the ADF/cofilin proteins to find tendencies along which the functional and structural diversification is governed through the evolution.
    European Journal of Cell Biology 05/2014; 93(5-6). DOI:10.1016/j.ejcb.2013.12.001 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models is still to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2Å and 6.1Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog - EV71 capsid - in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting.
    Journal of Structural Biology 12/2013; 185(3). DOI:10.1016/j.jsb.2013.12.003 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many actin-binding proteins (ABPs) use complex multi-domain architectures to integrate and coordinate multiple signals and interactions with the dynamic remodeling of actin cytoskeleton. In these proteins, small segments that are intrinsically disordered in their unbound native state can be functionally as important as identifiable folded units. These functional intrinsically disordered regions (IDRs) are however difficult to identify and characterize in vitro. Here, we try to summarize the state of the art in understanding the structural features and interfacial properties of IDRs involved in actin self-assembly dynamics. Recent structural and functional insights into the regulation of widespread, multi-functional WH2/β-thymosin domains, and of other IDRs such as those associated with WASP/WAVE, formin or capping proteins are examined. Understanding the functional versatility of IDRs in actin assembly requires apprehending by multiple structural and functional approaches their large conformational plasticity and dynamics in their interactions. In many modular ABPs, IDRs relay labile interactions with multiple partners and act as interaction hubs in interdomain and protein-protein interfaces. They thus control multiple conformational transitions between the inactive and active states or between various active states of multi-domain ABPs, and play an important role to coordinate the high turnover of interactions in actin self-assembly dynamics. © 2013 Wiley Periodicals, Inc.
    Cytoskeleton 11/2013; 70(11). DOI:10.1002/cm.21140 · 3.01 Impact Factor

Preview

Download
2 Downloads
Available from