Feasibility study of helical tomotherapy for total body or total marrow irradiation

Department of Therapeutic Radiology, University of Minnesota, Minneapolis, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
Medical Physics (Impact Factor: 2.64). 11/2005; 32(10):3214-24. DOI: 10.1118/1.2044428
Source: PubMed


Total body radiation (TBI) has been used for many years as a preconditioning agent before bone marrow transplantation. Many side effects still plague its use. We investigated the planning and delivery of total body irradiation (TBI) and selective total marrow irradiation (TMI) and a reduced radiation dose to sensitive structures using image-guided helical tomotherapy. To assess the feasibility of using helical tomotherapy, (A) we studied variations in pitch, field width, and modulation factor on total body and total marrow helical tomotherapy treatments. We varied these parameters to provide a uniform dose along with a treatment times similar to conventional TBI (15-30 min). (B) We also investigated limited (head, chest, and pelvis) megavoltage CT (MVCT) scanning for the dimensional pretreatment setup verification rather than total body MVCT scanning to shorten the overall treatment time per treatment fraction. (C) We placed thermoluminescent detectors (TLDs) inside a Rando phantom to measure the dose at seven anatomical sites, including the lungs. A simulated TBI treatment showed homogeneous dose coverage (+/-10%) to the whole body. Doses to the sensitive organs were reduced by 35%-70% of the target dose. TLD measurements on Rando showed an accurate dose delivery (+/-7%) to the target and critical organs. In the TMI study, the dose was delivered conformally to the bone marrow only. The TBI and TMI treatment delivery time was reduced (by 50%) by increasing the field width from 2.5 to 5.0 cm in the inferior-superior direction. A limited MVCT reduced the target localization time 60% compared to whole body MVCT. MVCT image-guided helical tomotherapy offers a novel method to deliver a precise, homogeneous radiation dose to the whole body target while reducing the dose significantly to all critical organs. A judicious selection of pitch, modulation factor, and field size is required to produce a homogeneous dose distribution along with an acceptable treatment time. In addition, conformal radiation to the bone marrow appears feasible in an external radiation treatment using image-guided helical tomotherapy.

26 Reads
  • Source
    • "In addition, use of a 0.6 cc ion chamber is not always appropriate in verification of high intensity modulated plans because of the large size of the ion chamber. Several groups have used TLDs in a rando phantom to verify doses for TMI or TBI, [4,6,25]; this allows measurement of point doses in the whole body in a single delivery of a TMI treatment plan. In our method, one delivery of the DQA procedure enables the measurement of both point doses using smaller ion chambers (0.053 cc compared to 0.6 cc farmer type ion chamber) and dose distributions from the head and neck to pelvis, which offers more informative QA results. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patient-specific dose verification for treatment planning in helical tomotherapy is routinely performed using a homogeneous virtual water cylindrical phantom of 30 cm diameter and 18 cm length (Cheese phantom). Because of this small length, treatment with total marrow irradiation (TMI) requires multiple deliveries of the dose verification procedures to cover a wide range of the target volumes, which significantly prolongs the dose verification process. We propose a fast, simple, and informative patient-specific dose verification method which reduce dose verification time for TMI with helical tomotherapy. We constructed a two-step solid water slab phantom (length 110 cm, height 8 cm, and two-step width of 30 cm and 15 cm), termed the Whole Body Phantom (WB phantom). Three ionization chambers and three EDR-2 films can be inserted to cover extended field TMI treatment delivery. Three TMI treatment plans were conducted with a TomoTherapy HiArt Planning Station and verified using the WB phantom with ion chambers and films. Three regions simulating the head and neck, thorax, and pelvis were covered in a single treatment delivery. The results were compared to those with the cheese phantom supplied by Accuray, Inc. following three treatment deliveries to cover the body from head to pelvis. Use of the WB phantom provided point doses or dose distributions from head and neck to femur in a single treatment delivery of TMI. Patient-specific dose verification with the WB phantom was 62% faster than with the cheese phantom. The average pass rate in gamma analysis with the criteria of a 3-mm distance-to-agreement and 3% dose differences was 94% +/- 2% for the three TMI treatment plans. The differences in pass rates between the WB and cheese phantoms at the upper thorax to abdomen regions were within 2%. The calculated dose agreed with the measured dose within 3% for all points in all five cases in both the WB and cheese phantoms. Our dose verification method with the WB phantom provides simple and rapid quality assurance without limiting dose verification information in total marrow irradiation with helical tomotherapy.
    Radiation Oncology 01/2014; 9(1):34. DOI:10.1186/1748-717X-9-34 · 2.55 Impact Factor
  • Source
    • "Fatal interstitial pneumonitis using hyperfractionated TBI with standing position was still as high as 18% [17]. Compared with TBI technique, doses to the sensitive organs in TMI techniques were reduced by 15%–70% of the target dose [11, 18] or 1.7- to 7.5-fold reduction in median organ doses [8]. Somlo et al. [12] reported that the estimated median radiation dose to normal organs was 11% to 81% of the prescribed marrow dose. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To compare the outcomes of melphalan 200 mg/m(2) (HDM200) and 8 Gy total marrow irradiation (TMI) delivered by helical tomotherapy plus melphalan 140 mg/m(2) (HDM140 + TMI 8 Gy) in newly diagnosed symptomatic multiple myeloma (MM) Asian patients. Between 2007 and 2010, nine consecutive myeloma patients who were scheduled to undergo autologous stem cell transplantation (ASCT) were studied. The patients received three cycles of vincristine-adriamycin-dexamethasone (VAD) regimen as induction chemotherapy, and if they had a partial response, peripheral blood stem cells were collected by dexamethasone-etoposide-cyclophosphamide-cisplatin (DECP). In arm A, six patients received the HDM200. In arm B, three patients received HDM140 + TMI 8 Gy. In arm B, the neutropenic duration was slightly longer than in arm A (P = 0.048). However, hematologic recovery (except for neutrophils), transfusion requirement, median duration of hospitalization, and the dose of G-CSF were similar in both arms. The median duration of overall survival and event-free survival was similar in the two arms (P = 0.387). As a conditioning regiment, HDM140 + TMI 8 Gy provide another chance for MM Asian patients who were not feasible for HDM200.
    09/2013; 2013:321762. DOI:10.1155/2013/321762
  • Source
    • "On the other hand, TBI or TMI deliveries with tomotherapy machine sometimes require more than 30 minutes of beam-on time [3,5,6]. Although the new Dose Control System (DCS) has been offered to the current tomotherapy machine since 2011, most tomotherapy machines worldwide do not have DCS. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Beam-on time in Total Marrow Irradiation (TMI) delivery with helical tomotherapy is more than 30 minutes. The purpose of this study was to investigate extended time output variation in tomotherapy machine without dose servo system and its impact on the dosimetry of TMI planning. Materials and methods The calibration procedures with 1800 seconds delivery were conducted. The slab and cylindrical phantoms were used for static and rotational output variation measurements, respectively. All measurements were performed in 0.1 second interval with an Exradin A1SL ionization chamber (Standard Imaging Inc., Madison, WI, USA) connected to the tomoelectrometer supplied by the manufacture. Simulated TMI treatment planning with a slab phantom was delivered and verified with ion chamber and EDR-2 films. Results The static output variations during 30 min averaged −2.9% ± 0.2%, -3.4% ± 0.3%, and −3.4% ± 0.3% at 10 min, 20 min, and 30 min, respectively. The rotational output variations from start averaged −2.5% ± 0.7%, -3.1% ± 0.7%, and −3.5% ± 0.8% at 10 min, 20 min, and 30 min, respectively. The maximum output variation was up to 4.5%. In a TMI planning model, in which beam-on time was over 30 min, planned dose and dose measured with ion chambers in both cranial and caudal sides agreed within 3%. Film measurements in cranial and caudal sides also showed the pass rates of 97.7% and 92.2% with the criteria of 3 mm/3% in gamma analysis. Conclusion These results suggest that long TMI delivery by helical tomotherapy, even without dose servo system, does not pose a risk for significant deviations from the original treatment plan regardless of the output variation. However, very long time output variation should be checked before the first treatment.
    Radiation Oncology 05/2013; 8(1):123. DOI:10.1186/1748-717X-8-123 · 2.55 Impact Factor
Show more

Similar Publications


26 Reads
Available from