Amyotrophic lateral sclerosis: Recent advances and future therapies

Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London and National Hospital for Neurology and Neurosurgery, London, UK.
Current Opinion in Neurology (Impact Factor: 5.73). 01/2006; 18(6):712-9. DOI: 10.1097/01.wco.0000187248.21103.c5
Source: PubMed

ABSTRACT Amyotrophic lateral sclerosis is a rare but fatal motoneuron disorder. Despite intensive research riluzole remains the only available therapy, with only marginal effects on survival. Here we review some of the recent advances in the search for a disease-modifying therapy for amyotrophic lateral sclerosis.
A number of established agents have recently been re-investigated for their potential as neuroprotective agents, including beta-lactam antibiotics and minocycline. Progress has also been made in exploiting growth factors for the treatment of amyotrophic lateral sclerosis, partly due to advances in developing effective delivery systems to the central nervous system. A number of new therapies have also been identified, including a novel class of compounds, heat-shock protein co-inducers, which upregulate cell stress responses thereby mediating neuroprotection. Non-drug-based therapies are also under development, with progress in gene-silencing and stem cell therapies.
In the past few years, significant advances have been made in both our understanding of amyotrophic lateral sclerosis pathogenesis and the development of new therapeutic approaches. However, caution must be exercised in view of the long-standing failure to successfully transfer therapeutic compounds to the clinic. A deeper awareness in the research community of the need for clinically relevant preclinical studies, coupled with a better understanding of the issues surrounding clinical trial design for amyotrophic lateral sclerosis, offers hope that the growing list of validated preclinical therapeutics can finally yield an effective disease-modifying treatment.

  • Source
    • "sporadic form of ALS remains unclear, while progresses in understanding the mechanisms of disease have been made into the familial forms. Glutamate excitotoxicity, oxidative stress, microglial activation, and neuroinflammation have all been implicated in the pathogenesis of ALS (Bendotti and Carrı`, 2004; Bruijn et al., 2004; Nirmalananthan and Greensmith, 2005; Rao and Weiss, 2004). Interestingly, these pathological events are potentially modulated by endocannabinoids, possibly explaining the neuroprotective eVects of increasing endocannabinoid levels in ALS animal models. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations of the endocannabinoid system (ECS) have been recently implicated in a number of neuroinflammatory and neurodegenerative conditions so that the pharmacological modulation of cannabinoid (CB) receptors and/or of the enzymes controlling synthesis, transport, and degradation of these substances has emerged as a valuable option to treat neurological diseases. Here, we describe the current knowledge concerning the rearrangement of ECS in a primarily inflammatory disorder of the central nervous system such as multiple sclerosis (MS), and in a primarily degenerative condition such as amyotrophic lateral sclerosis (ALS). Furthermore, the data supporting a therapeutic role of agents modulating CB receptors or endocannabinoid tone in these disorders will also be reviewed. Complex changes of ECS take place in both diseases, influencing crucial aspects of their pathophysiology and clinical manifestations. Neuroinflammation, microglial activation, oxidative stress, and excitotoxicity are variably combined in MS and in ALS and can be modulated by endocannabinoids or by drugs targeting the ECS.
    International Review of Neurobiology 02/2007; 82:171-86. DOI:10.1016/S0074-7742(07)82009-5 · 2.46 Impact Factor
  • Source
    • "Currently, riluzole (Rilutek ® ) is the only drug treatment for ALS approved by the Food and Drug Administration (FDA). However, the drug only slows progression of ALS rather than curing the disease (Bruijn, Miller et al. 2004; Nirmalananthan and Greensmith 2005). Therefore, new treatment options are greatly needed for this devastating disease. "
    [Show abstract] [Hide abstract]
    ABSTRACT: myotrophic lateral sclerosis (ALS) is a devastating disease. Currently, there is no cure for this disease, and effective treatment strategies are greatly needed. Calpain activation plays a major role in the motor neuron degeneration that causes ALS. Therefore, therapeutic strategies can inhibit calpain activity in the central nervous system (CNS) have great clinical potential. The calpain inhibitors AK295 and MDL-28170 have been demonstrated to be neuroprotective in animal models of neurological injury, and should have great potential to treat ALS; however delivery problems have hindered their clinical success. Therefore, development of a new strategy that can locally deliver the calpain inhibitors to the central nervous system could significantly improve the treatment of ALS. The objectives of my thesis research were (1) to develop high molecular weight polyketals that provide sustained release properties for hydrophobic molecules, (2) to formulate calpain inhibitor-encapsulated polyketal microparticles which have a release half life of one month in vitro, (3) and to evaluate the performance of polyketal microparticles for delivering calpain inhibitors to the spinal cord in vivo. In completing these specific aims, we have developed biodegradable polymeric microparticles for the delivery of calpain inhibitors, AK295 and MDL-28170 to treat ALS. The results of calpain assays showed that both AK-PKMs and MDL-PKMs maintained most of their inhibitory activities even after the robust emulsion process. The in vitro release profile of MDL-28170 in MDL-PKMs showed that 50 % of the drug was released in the first 30 days. Experiments using dye-encapsulated microparticles showed that polyketal microparticles (1-2 ìm) are not easily cleared in the neutral physiological environment and can have potential to continuously release drug from the injection sites in the spinal cord. The efficacy of calpain inhibitor-encapsulated PKMs were studied by evaluation the behavior and survival of SOD1G93A rats, a genetic rat model for ALS. We observed the trend toward improvements in grip strength and rotarod performance in the first two months from the AK-PKMs treated group, however, further improvements are needed to enhance their in vivo efficacy.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our global population is ageing and an ever increasing number of elderly are affected with neurodegenerative diseases, including the subjects of the studies in this work, Alzheimer's disease (AD), Parkinson's disease (PD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). On strong evidence that several genes may influence the development of sporadic neurodegenerative diseases, the genetic association approach was used in the work of this thesis to identify the multiple variants of small effect that may modulate susceptibility to common, complex neurodegenerative diseases. It has been shown that the common genetic variation of one of these susceptibility genes, MAPT, that of the microtubule associated protein, tau, is an important genetic risk factor for neurodegenerative diseases. There are two major MAPT haplotypes at 17q21.31 designated as H1 and H2. In order to dissect the relationship between MAPT variants and the pathogenesis of neurodegenerative diseases, the architecture and distribution the major haplotypes of MAPT have been assessed. The distribution of H2 haplotype is almost exclusively in the Caucasian population, with other populations having H2 allele frequencies of essentially zero. A series of association studies of common variation of MAPT in PSP, CBD, AD and PD in different populations were performed in this work with the hypothesis that common molecular pathways are involved in these disorders. Multiple common variants of the H1 haplotypes were identified and one common haplotype, H1c, showed preferential association with PSP and AD. A whole-genome association study of PD was also undertaken in this study in order to detect if common genetic variability exerts a large effect in risk for disease in idiopathic PD. Twenty six candidate loci have been found in this whole-genome association study and they provide the basis for our investigation of disease causing genetic variants in idiopathic PD.
Show more