Temporal profile of amyloid-beta (A beta) oligomerization in an in vivo model of Alzheimer disease - A link between A beta and tau pathology

Northwestern University, Evanston, Illinois, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2006; 281(3):1599-604. DOI: 10.1074/jbc.M507892200
Source: PubMed

ABSTRACT Accumulation of amyloid-beta (Abeta) is one of the earliest molecular events in Alzheimer disease (AD), whereas tau pathology is thought to be a later downstream event. It is now well established that Abeta exists as monomers, oligomers, and fibrils. To study the temporal profile of Abeta oligomer formation in vivo and to determine their interaction with tau pathology, we used the 3xTg-AD mice, which develop a progressive accumulation of plaques and tangles and cognitive impairments. We show that SDS-resistant Abeta oligomers accumulate in an age-dependent fashion, and we present evidence to show that oligomerization of Abeta appears to first occur intraneuronally. Finally, we show that a single intrahippocampal injection of a specific oligomeric antibody is sufficient to clear Abeta pathology, and more importantly, tau pathology. Therefore, Abeta oligomers may play a role in the induction of tau pathology, making the interference of Abeta oligomerization a valid therapeutic target.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aside from the well-known amyloid beta and tau pathologies found in Alzheimer's disease (AD), neuroinflammation is a well-established aspect described in humans and animal models of the disease. Inflammatory perturbations are evident not only in neurons, but also in non-neuronal cells and cytokines in the AD brain. Although the amyloid hypothesis implicates amyloid beta (A beta) as the prime initiator of the AD, brain inflammation in AD has a complex relationship between A beta and tau. Using our work with the 5-lipoxygenase protein as an example, we suggest that at least in the case of AD, there is an interdependent and not necessarily hierarchical pathological relationship between A beta, tau and inflammation.
    09/2014; 5(3):197-202. DOI:10.2478/s13380-014-0225-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 03/2015; 85(6):1162-1176. DOI:10.1016/j.neuron.2014.12.064 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clues to Alzheimer disease (AD) pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP) and its processing has emerged and considerable interest has been directed at the hypothesis that Aβ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of Aβ peptides have been discovered such as γ-secretase inhibitors (GSIs) and modulators (GSMs). GSIs and GSMs reduce Aβ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF), suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative.
    PLoS ONE 02/2015; 10(2):e0118379. DOI:10.1371/journal.pone.0118379 · 3.53 Impact Factor