Disruption of GW bodies impairs mammalian RNA interference.

Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.
Nature Cell Biology (Impact Factor: 20.06). 01/2006; 7(12):1267-74. DOI: 10.1038/ncb1334
Source: PubMed

ABSTRACT The GW182 RNA-binding protein was initially shown to associate with a specific subset of mRNAs and to reside within discrete cytoplasmic foci named GW bodies (GWBs). GWBs are enriched in proteins that are involved in mRNA degradation. Recent reports have shown that exogenously introduced human Argonaute-2 (Ago2) is also enriched in GWBs, indicating that RNA interference function may be somehow linked to these structures. In this report, we demonstrate that endogenous Ago2 and transfected small interfering RNAs (siRNAs) are also present within these same cytoplasmic bodies and that the GW182 protein interacts with Ago2. Disruption of these cytoplasmic foci in HeLa cells interferes with the silencing capability of a siRNA that is specific to lamin-A/C. Our data support a model in which GW182 and/or the microenvironment of the cytoplasmic GWBs contribute to the RNA-induced silencing complex and to RNA silencing.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are short non-coding RNAs that can mediate changes in gene expression and are required for the formation of skeletal muscle (myogenesis). With the goal of identifying novel miRNA biomarkers of muscle disease, we profiled miRNA expression using miRNA-seq in the gastrocnemius muscles of dystrophic mdx4cv mice. After identifying a down-regulation of the miR-30 family (miR-30a-5p, -30b, -30c, -30d and -30e) when compared to C57Bl/6 (WT) mice, we found that overexpression of miR-30 family miRNAs promotes differentiation, while inhibition restricts differentiation of myoblasts in vitro. Additionally, miR-30 family miRNAs are coordinately down-regulated during in vivo models of muscle injury (barium chloride injection) and muscle disuse atrophy (hindlimb suspension). Using bioinformatics tools and in vitro studies, we identified and validated Smarcd2, Snai2 and Tnrc6a as miR-30 family targets. Interestingly, we show that by targeting Tnrc6a, miR-30 family miRNAs negatively regulate the miRNA pathway and modulate both the activity of muscle-specific miR-206 and the levels of protein synthesis. These findings indicate that the miR-30 family may be an interesting biomarker of perturbed muscle homeostasis and muscle disease.
    PLoS ONE 02/2015; 10(2):e0118229. DOI:10.1371/journal.pone.0118229 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA (miRNA) transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs) as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity) to multivesicular bodies (sites of exosome biogenesis) and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs) for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences.
    Cell Reports 09/2014; 8(5):1432-46. DOI:10.1016/j.celrep.2014.07.035 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol use and hepatitis C virus (HCV) infection synergize to cause liver damage, and microRNA-122 (miR-122) appears to play a key role in this process. Argonaute 2 (Ago2), a key component of the RNA-induced silencing complex (RISC), has been shown to be important in modulating miR-122 function during HCV infection. However, GW182, a critical component of processing bodies (GW bodies) that is recruited by Ago2 to target messenger RNA (mRNA), has not been assessed in HCV infection. To characterize the role of GW182 in the pathogenesis of HCV infection, we determined its transcription and protein expression in an HCV J6/JFH1 culture system. Transcript and protein levels of GW182 as well as HCV RNA and protein expression increased with alcohol exposure. Specific silencing of mRNA expression by small interfering RNA against GW182 significantly decreased HCV RNA and protein expression. Overexpression of GW182 significantly increased HCV RNA and protein expression in HCV J6/JFH1 infected Huh7.5 cells. Furthermore, GW182 colocalized and coimmunoprecipitated with heat shock protein 90 (HSP90), which increased upon alcohol exposure with and without HCV infection and enhanced HCV gene expression. The use of an HSP90 inhibitor or knockdown of HSP90 decreased GW182 and miR-122 expression and significantly reduced HCV replication. Conclusion: Overall, our results suggest that GW182 protein that is linked to miR-122 biogenesis and HSP90, which has been shown to stabilize the RISC, are novel host proteins that regulate HCV infection during alcohol abuse. (HEPATOLOGY 2013)
    Hepatology 01/2013; 57(1). DOI:10.1002/hep.26010 · 11.19 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014