Article

Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner.

Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
Carcinogenesis (Impact Factor: 5.27). 06/2006; 27(5):972-81. DOI: 10.1093/carcin/bgi268
Source: PubMed

ABSTRACT Conjugated linoleic acids (CLAs), naturally occurring fatty acids in ruminant food products, have anti-tumorigenic and pro-apoptotic properties in animal as well as in vitro models of cancer. However, the cellular mechanism has not been fully understood. NAG-1 (non-steroidal anti-inflammatory drug-activated gene-1) is induced by several dietary compounds and belongs to a TGF-beta superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. The present study was performed to elucidate the molecular mechanism by which CLA stimulates anti-tumorigenic activity in human colorectal cancer (CRC) cells. The trans-10, cis-12-CLA (t10,c12-CLA) repressed cell proliferation and induced apoptosis, whereas linoleic acid or c9,t11-CLA showed no effect on cell proliferation and apoptosis. We also found that t10,c12-CLA induced the expression of a pro-apoptotic gene, NAG-1, in human CRC cells. Inhibition of NAG-1 expression by small interference RNA (siRNA) results in repression of t10,c12-CLA-induced apoptosis. Microarray analysis using t10,c12-CLA-treated HCT-116 cells revealed that activating transcription factor 3 (ATF3) was induced and its expression was confirmed by western analysis. The t10,c12-CLA treatment followed by the overexpression of ATF3 increased NAG-1 promoter activity in HCT-116 cells. We further provide the evidence that t10,c12-CLA inhibited the phosphorylation of AKT and the blockage of GSK-3 by siRNA abolished t10,c12-CLA-induced ATF3 and NAG-1 expression. The current study demonstrates that t10,c12-CLA stimulates ATF3/NAG-1 expression and subsequently induces apoptosis in an isomer specific manner. These effects may be through inhibition of AKT/GSK-3beta pathway in human CRC cells.

Download full-text

Full-text

Available from: Seung Joon Baek, Jul 04, 2015
0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have found an association between the consumption of certain bioactive lipids and improved human health, e.g., the prevention, delay, or treatment of chronic and acute diseases, such as cancer, cardiovascular disease (CVD), osteoporosis, and immune disorders. In this review, we discuss food-based sources and potential beneficial attributes of major dietary bioactive lipids: polyunsaturated fatty acids; carotenoids; phytosterols and phytostanols; and fat-soluble vitamins. We summarize the various challenges associated with incorporating these bioactive lipids into foods and beverages, such as poor water solubility, high melting point, and low chemical stability. Finally, we propose several techniques that have been used to solve the challenges and integrate dietary bioactive lipids into foods for improved health. Expected final online publication date for the Annual Review of Food Science and Technology Volume 4 is February 28, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Review of Food Science and Technology 12/2012; DOI:10.1146/annurev-food-032112-135808 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abutilon indicum (L.) Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect of A. indicum L. remain unknown. The aim of this study was to evaluate whether extract of A. indicum L. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots) of A. indicum L. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγ and activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol) did not affect the activity of kinases involved in Akt and GSK-3β pathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1) promoter activity. These results suggest that the extract from A. indicum L. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγ agonist activity, and increasing glucose utilization via GLUT1.
    Evidence-based Complementary and Alternative Medicine 01/2011; 2011:167684. DOI:10.1093/ecam/neq004 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug associated with anti-tumorigenic and pro-apoptotic properties in animal and in vitro models of cancer. However, the underlying cellular mechanisms by which TA exerts its effects are only partially understood. Activating transcription factor 3 (ATF3) is a member of the ATF/CREB subfamily of the basic region-leucine zipper family and has been known as a tumor suppressor in human colorectal cancer cells. The present study was performed to observe whether ATF3 mediates TA-induced apoptosis and to elucidate the molecular mechanism of ATF3 transcription induced by TA. TA treatment and ectopic expression of ATF3 increased apoptosis, whereas knockdown of ATF3 resulted in significant repression of TA-activated apoptosis. The TA treatment also induced ATF3 promoter activity. Internal deletion and point mutation of the predicted ATF/C/EBP binding site in ATF3 promoter abolished luciferase activation by TA. Overexpression of ATF2 resulted in significant increase in ATF3 promoter activity, and electrophoretic mobility shift assay identified this region as a core sequence to which ATF2 binds. TA treatment resulted in an increase in ATF2 phosphorylation, which was followed by a subsequent increase in ATF3 transcription. Knock down of ATF2 abolished TA-induced ATF3 expression. We further provide evidence that TA leads to increases in phospho-p38 MAPK, JNK and ERK levels. Inhibition of these pathways using selective inhibitors and dominant negative constructs ameliorated TA-induced ATF3 expression and promoter activities. The current study shows that TA stimulates ATF3 expression and subsequently induces apoptosis. These pathways are mediated through phosphorylation of ATF2, which is mediated by p38 MAPK-, JNK- and ERK-dependent pathways.
    Oncogene 09/2010; 29(37):5182-92. DOI:10.1038/onc.2010.251 · 8.56 Impact Factor