Article

Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities

Department of Physical Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
Circulation (Impact Factor: 14.95). 11/2005; 112(20):3073-9. DOI: 10.1161/CIRCULATIONAHA.105.548743
Source: PubMed

ABSTRACT Ambient air pollution has been associated with increases in acute morbidity and mortality. The objective of this study was to evaluate the short-term effects of urban air pollution on cardiac hospital readmissions in survivors of myocardial infarction, a potentially susceptible subpopulation.
In this European multicenter cohort study, 22,006 survivors of a first myocardial infarction were recruited in Augsburg, Germany; Barcelona, Spain; Helsinki, Finland; Rome, Italy; and Stockholm, Sweden, from 1992 to 2000. Hospital readmissions were recorded in 1992 to 2001. Ambient nitrogen dioxide, carbon monoxide, ozone, and mass of particles <10 microm (PM10) were measured. Particle number concentrations were estimated as a proxy for ultrafine particles. Short-term effects of air pollution on hospital readmissions for myocardial infarction, angina pectoris, and cardiac causes (myocardial infarction, angina pectoris, dysrhythmia, or heart failure) were studied in city-specific Poisson regression analyses with subsequent pooling. During follow-up, 6655 cardiac readmissions were observed. Cardiac readmissions increased in association with same-day concentrations of PM10 (rate ratio [RR] 1.021, 95% CI 1.004 to 1.039) per 10 microg/m3) and estimated particle number concentrations (RR 1.026 [95% CI 1.005 to 1.048] per 10,000 particles/cm3). Effects of similar strength were observed for carbon monoxide (RR 1.014 [95% CI 1.001 to 1.026] per 200 microg/m3 [0.172 ppm]), nitrogen dioxide (RR 1.032 [95% CI 1.013 to 1.051] per 8 microg/m3 [4.16 ppb]), and ozone (RR 1.026 [95% CI 1.001 to 1.051] per 15 microg/m3 [7.5 ppb]). Pooled effect estimates for angina pectoris and myocardial infarction readmissions were comparable.
The results suggest that ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in 5 European cities.

0 Followers
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study shows for the first time a chemical and morphological characterization of agricultural aerosols released during three important agricultural operations: threshing, plowing and sowing. The field campaigns were carried out in the eastern part of the Po Valley, Italy, in summer and autumn 2009. The aerosol particles were sampled on quartz fiber filters and polytetrafluoroethylene membranes in order to allow ICP-MS analysis and SEM-EDS investigations, respectively. The organic carbon mass concentrations were measured with a Sunset Laboratory Dual-Optical OCEC Aerosol analyzer. The morphological and chemical analyses by SEM-EDS allowed recognizing four main particle classes: organic, silica, calcite and clay minerals. The organic particles contribute to both fine and coarse aerosol fractions up to ca. 50% for all three agricultural activities. This was also confirmed by OCEC analysis for fine fraction. Most of the agricultural aerosols, about 60%, were single particles and the remaining 40% were agglomerations of particles. The ICP-MS results showed that threshing and plowing produce more aerosol particles than sowing, which was characterized by important amounts of clay minerals produced from land soils.
    Journal of Environmental Sciences 09/2014; 26(9):1903-1912. DOI:10.1016/j.jes.2014.07.004 · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantifying the impact of air pollution on the public's health has become an increasingly critical component in policy discussion. Recent data indicate that more than 70% of the world population lives in cities. Several studies reported that current levels of air pollutants in urban areas are associated with adverse health risks, namely, cardiovascular diseases and lung cancer. IARC recently classified outdoor air pollution and related particulate matter (PM) as carcinogenic to humans. Despite the air quality improvements observed over the last few years, there is still continued widespread exceedance within Europe, particularly regarding PM and nitrogen oxides (NOx). The European Air Quality Directive 2008/50/EC requires Member States to design appropriate air quality plans for zones where air quality does not comply with established limit values. However, in most cases, air quality is only quantified using a combination of monitored and modeled data and no health impact assessment is carried out. An integrated approach combining the effects of several emission abatement measures on air quality, impacts on human health, and associated implementation costs enables an effective cost-benefit analysis and an added value to the decision-making process. Hence, this review describes the basic steps and tools for integrating health into air quality assessment (health indicators, exposure-response functions). In addition, consideration is given to two major outdoor pollutants: PM and NO2. A summary of the health metrics used to assess the health impact of PM and NO2 and recent epidemiologic data are also described.
    Journal of Toxicology and Environmental Health Part B 08/2014; 17(6-6):307-340. DOI:10.1080/10937404.2014.946164 · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Diabetes may confer an increased risk for the cardiovascular health effects of particulate air pollution, but few human clinical studies of air pollution have included people with diabetes. Ultrafine particles (UFP, ¿100 nm in diameter) have been hypothesized to be an important component of particulate air pollution with regard to cardiovascular health effects.Methods17 never-smoker subjects 30¿60 years of age, with stable type 2 diabetes but otherwise healthy, inhaled either filtered air (0¿10 particles/cm3) or elemental carbon UFP (~107 particles/cm3, ~50 ug/m3, count median diameter 32 nm) by mouthpiece, for 2 hours at rest, in a double-blind, randomized, crossover study design. A digital 12-lead electrocardiogram (ECG) was recorded continuously for 48 hours, beginning 1 hour prior to exposure.ResultsAnalysis of 5-minute segments of the ECG during quiet rest showed reduced high-frequency heart rate variability with UFP relative to air exposure (p¿=¿0.014), paralleled by non-significant reductions in time-domain heart rate variability parameters. In the analysis of longer durations of the ECG, we found that UFP exposure increased the heart rate relative to air exposure. During the 21- to 45-hour interval after exposure, the average heart rate increased approximately 8 beats per minute with UFP, compared to 5 beats per minute with air (p¿=¿0.045). There were no UFP effects on cardiac rhythm or repolarization.Conclusions Inhalation of elemental carbon ultrafine particles alters heart rate and heart rate variability in people with type 2 diabetes. Our findings suggest that effects may occur and persist hours after a single 2-hour exposure.
    Particle and Fibre Toxicology 07/2014; 11(1):31. DOI:10.1186/s12989-014-0031-y · 6.99 Impact Factor