Article

Avidity for antigen shapes clonal dominance in CD8 T cell populations specific for persistent DNA viruses

Human Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Journal of Experimental Medicine (Impact Factor: 13.91). 12/2005; 202(10):1349-61. DOI: 10.1084/jem.20051357
Source: PubMed

ABSTRACT The forces that govern clonal selection during the genesis and maintenance of specific T cell responses are complex, but amenable to decryption by interrogation of constituent clonotypes within the antigen-experienced T cell pools. Here, we used point-mutated peptide-major histocompatibility complex class I (pMHCI) antigens, unbiased TCRB gene usage analysis, and polychromatic flow cytometry to probe directly ex vivo the clonal architecture of antigen-specific CD8(+) T cell populations under conditions of persistent exposure to structurally stable virus-derived epitopes. During chronic infection with cytomegalovirus and Epstein-Barr virus, CD8(+) T cell responses to immunodominant viral antigens were oligoclonal, highly skewed, and exhibited diverse clonotypic configurations; TCRB CDR3 sequence analysis indicated positive selection at the protein level. Dominant clonotypes demonstrated high intrinsic antigen avidity, defined strictly as a physical parameter, and were preferentially driven toward terminal differentiation in phenotypically heterogeneous populations. In contrast, subdominant clonotypes were characterized by lower intrinsic avidities and proportionately greater dependency on the pMHCI-CD8 interaction for antigen uptake and functional sensitivity. These findings provide evidence that interclonal competition for antigen operates in human T cell populations, while preferential CD8 coreceptor compensation mitigates this process to maintain clonotypic diversity. Vaccine strategies that reconstruct these biological processes could generate T cell populations that mediate optimal delivery of antiviral effector function.

1 Follower
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2K d epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2D d epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2D d specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner.
    The Journal of Immunology 12/2014; 193:5626-5636. DOI:10.4049/jimmunol.1401017 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in T cell epitopes are implicated in hepatitis C virus (HCV) persistence and can impinge on vaccine development. We recently demonstrated a narrow bias in the human TCR repertoire targeted at an immunodominant, but highly mutable, HLA-B*0801-restricted epitope ((1395)HSKKKCDEL(1403) [HSK]). To investigate if the narrow TCR repertoire facilitates CTL escape, structural and biophysical studies were undertaken, alongside comprehensive functional analysis of T cells targeted at the natural variants of HLA-B*0801-HSK in different HCV genotypes and quasispecies. Interestingly, within the TCR-HLA-B*0801-HSK complex, the TCR contacts all available surface-exposed residues of the HSK determinant. This broad epitope coverage facilitates cross-genotypic reactivity and recognition of common mutations reported in HCV quasispecies, albeit to a varying degree. Certain mutations did abrogate T cell reactivity; however, natural variants comprising these mutations are reportedly rare and transient in nature, presumably due to fitness costs. Overall, despite a narrow bias, the TCR accommodated frequent mutations by acting like a blanket over the hypervariable epitope, thereby providing effective viral immunity. Our findings simultaneously advance the understanding of anti-HCV immunity and indicate the potential for cross-genotype HCV vaccines.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reconstitution of CMV-specific immunity after transplant remains a primary clinical objective to prevent CMV disease, and adoptive immunotherapy of CMV-specific T cells can be an effective therapeutic approach. Because of viral persistence, most CMV-specific CD8(+) T cells become terminally differentiated effector phenotype CD8(+) T cells (TEFF). A minor subset retains a memory-like phenotype (memory phenotype CD8(+) T cells [TM]), but it is unknown whether these cells retain memory function or persist over time. Interestingly, recent studies suggest that CMV-specific CD8(+) T cells with different phenotypes have different abilities to reconstitute sustained immunity after transfer. The immunology of human CMV infections is reflected in the murine CMV (MCMV) model. We found that human CMV- and MCMV-specific T cells displayed shared genetic programs, validating the MCMV model for studies of CMV-specific T cells in vivo. The MCMV-specific TM population was stable over time and retained a proliferative capacity that was vastly superior to TEFF. Strikingly, after transfer, TM established sustained and diverse T cell populations even after multiple challenges. Although both TEFF and TM could protect Rag(-/-) mice, only TM persisted after transfer into immune replete, latently infected recipients and responded if recipient immunity was lost. Interestingly, transferred TM did not expand until recipient immunity was lost, supporting that competition limits the Ag stimulation of TM. Ultimately, these data show that CMV-specific TM retain memory function during MCMV infection and can re-establish CMV immunity when necessary. Thus, TM may be a critical component for consistent, long-term adoptive immunotherapy success. Copyright © 2015 by The American Association of Immunologists, Inc.

Full-text (4 Sources)

Download
25 Downloads
Available from
Jun 6, 2014

Similar Publications