Article

Olfactory inputs to hypothalamic neurons controlling reproduction and fertility.

Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Cell (Impact Factor: 33.12). 12/2005; 123(4):669-82. DOI: 10.1016/j.cell.2005.08.039
Source: PubMed

ABSTRACT In order to gain insight into sensory processing modulating reproductive behavioral and endocrine changes, we have aimed at identifying afferent pathways to neurons synthesizing luteinizing hormone-releasing hormone (LHRH, also known as gonadotropin-releasing hormone [GnRH]), a key neurohormone of reproduction. Injection of conditional pseudorabies virus into the brain of an LHRH::CRE mouse line led to the identification of neuronal networks connected to LHRH neurons. Remarkably, and in contrast to established notions on the nature of LHRH neuronal inputs, our data identify major olfactory projection pathways originating from a discrete population of olfactory sensory neurons but fail to document any synaptic connectivity with the vomeronasal system. Accordingly, chemosensory modulation of LHRH neuronal activity and mating behavior are dramatically impaired in absence of olfactory function, while they appear unaffected in mouse mutants lacking vomeronasal signaling. Further visualization of afferents to LHRH neurons across the brain offers a unique opportunity to uncover complex polysynaptic circuits modulating reproduction and fertility.

1 Bookmark
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animals display a range of innate social behaviors that play essential roles in survival and reproduction. While the medial amygdala (MeA) has been implicated in prototypic social behaviors such as aggression, the circuit-level mechanisms controlling such behaviors are not well understood. Using cell-type-specific functional manipulations, we find that distinct neuronal populations in the MeA control different social and asocial behaviors. A GABAergic subpopulation promotes aggression and two other social behaviors, while neighboring glutamatergic neurons promote repetitive self-grooming, an asocial behavior. Moreover, this glutamatergic subpopulation inhibits social interactions independently of its effect to promote self-grooming, while the GABAergic subpopulation inhibits self-grooming, even in a nonsocial context. These data suggest that social versus repetitive asocial behaviors are controlled in an antagonistic manner by inhibitory versus excitatory amygdala subpopulations, respectively. These findings provide a framework for understanding circuit-level mechanisms underlying opponency between innate behaviors, with implications for their perturbation in psychiatric disorders.
    Cell 09/2014; 158(6):1348-61. · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV) for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC) shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre) efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP). These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo.
    Frontiers in Neuroanatomy 09/2014; 8. · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of chemosensation for vertebrates is reflected in the vast and variable nature of their chemosensory tissues, neurons, and genes, which we explore in this review. Immense progress has been made in elucidating the molecular biology of olfaction since the discovery of the olfactory receptor genes by Buck and Axel, which eventually won the authors the Nobel Prize. In particular, research linking odor ligands to olfactory receptors (ORs) is truly revolutionizing our understanding of how a large but limited number of chemosensory receptors can allow us to perceive the massive diversity of odors in our habitat. This research is providing insight into the evolution of genomes and providing the raw data needed to explore links between genotype and phenotype, still a grand challenge in biology. Research into olfaction is still developing and will no doubt continue until we have a clear understanding of how all odors are detected and the evolutionary forces that have molded the chemosensory subgenome in vertebrates. This knowledge will not only be a huge step in elucidating olfactory function, advancing scientific knowledge and techniques, but there are also commercial applications for this research. This review focuses on the molecular basis of chemosensation, particularly olfaction, its evolution across vertebrates and the recent molecular advances linking odors to their cognate receptors. Anat Rec, 297:2216–2226, 2014. © 2014 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 11/2014; 297(11). · 1.34 Impact Factor

Full-text (2 Sources)

Download
49 Downloads
Available from
May 22, 2014