Article

hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists.

Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
Journal of the American Society of Nephrology (Impact Factor: 8.99). 02/2006; 17(1):54-65. DOI: 10.1681/ASN.2005030257
Source: PubMed

ABSTRACT Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-dependent transcription factor that plays an important role in the regulation of insulin sensitivity and lipid metabolism. Evidence shows that PPAR-gamma agonists also ameliorate renal fibrotic lesions in both diabetic nephropathy and nondiabetic chronic kidney disease. However, little is known about the mechanism underlying their antifibrotic action. This study demonstrated that PPAR-gamma agonists could exert their actions by inducing antifibrotic hepatocyte growth factor (HGF) expression. Incubation of mesangial cells with natural or synthetic PPAR-gamma agonists 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) or troglitazone and ciglitazone suppressed TGF-beta1-mediated alpha-smooth muscle actin, fibronectin, and plasminogen activator inhibitor-1 expression. PPAR-gamma agonists also induced HGF mRNA expression and protein secretion. Transfection studies revealed that 15d-PGJ2 stimulated HGF gene promoter activity, which was dependent on the presence of a novel peroxisome proliferator response element. Treatment of mesangial cells with 15d-PGJ2 induced the binding of PPAR-gamma to the peroxisome proliferator response element in the HGF promoter region. PPAR-gamma agonists also activated c-met receptor tyrosine phosphorylation, induced Smad transcriptional co-repressor TG-interacting factor expression, and blocked TGF-beta/Smad-mediated gene transcription in mesangial cells. Furthermore, ablation of c-met receptor through the LoxP-Cre system in mesangial cells abolished the antifibrotic effect of 15d-PGJ2. PPAR-gamma activation also induced HGF expression in renal interstitial fibroblasts and repressed TGF-beta1-mediated myofibroblast activation. Both HGF and 15d-PGJ2 attenuated Smad nuclear translocation in response to TGF-beta1 stimulation in renal fibroblasts. Together, these findings suggest that HGF may act as a downstream effector that mediates the antifibrotic action of PPAR-gamma agonists.

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Keloids and hypertrophic scars are prevalent disabling conditions with still suboptimal treatments. Basic science and molecular-based medicine research have contributed to unravel new bench-to-bedside scar therapies and to dissect the complex signalling pathways involved. Peptides such as the transforming growth factor beta (TGF-β) superfamily, with Smads, Ski, SnoN, Fussels, endoglin, DS-Sily, Cav-1p, AZX100, thymosin-β4 and other related molecules may emerge as targets to prevent and treat keloids and hypertrophic scars. The aim of this review is to describe the basic complexity of these new molecular scar management strategies and point out new fibrosis research lines.
    Burns: journal of the International Society for Burn Injuries 01/2014; · 1.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are the most common type of primary tumor in the central nervous system and are characterized by abundant capillary angiogenesis. It is important to study the underlying molecular mechanisms of angiogenesis in order to aid the identification of potential therapeutic targets. The aim of the current study was to investigate the expression levels of thrombospondin-1 (TSP-1), transforming growth factor-β (TGF-β) and peroxisome proliferator-activated receptor-γ (PPAR-γ) in gliomas, and determine their relationships with angiogenesis. Immunohistochemical methods were used to detect TSP-1, TGF-β and PPAR-γ expression levels and to assess microvascular density (MVD) in 99 glioma tissue samples of various grades. The total positive expression rates of TSP-1 and PPAR-γ were 78.4 and 94.1% in low-grade gliomas and 45.8 and 39.6% in high-grade gliomas. These values suggest that their expression negatively correlated with tumor grade. However, TGF-β expression positively correlated with tumor grade; the total positive expression rate of TGF-β in high-grade gliomas (93.8%) was significantly increased compared with that in low-grade gliomas (43.1%). The MVD in the low-grade group was 28±7.2 vessels/field, which was significantly lower than in the high-grade group (45±6.2 vessels/field). TSP-1 and PPAR-γ expression levels were negatively correlated with MVD (P<0.05), while the TGF-β expression level was positively correlated with MVD (P<0.05). These results indicate that the TSP-1, TGF-β and PPAR-γ expression levels in gliomas are correlated with MVD, which suggests that these proteins may be involved in the regulation of glioma angiogenesis.
    Oncology letters 01/2014; 7(1):95-100. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to ameliorate diabetic nephropathy, but much less is known about their effects in non-diabetic nephropathies. In the present study, metabolic parameters, blood pressure, aortic endothelial function along with molecular and structural markers of glomerular and tubulointerstitial renal damage, were studied in a rat model of normotensive nephropathy induced by adriamycin and treated with PPARγ agonist pioglitazone (12mg/kg, po), angiotensin converting enzyme (ACE) inhibitor ramipril (1mg/kg, po) or their combination. Pioglitazone had no effect on systolic blood pressure, marginally reduced glycemia and improved aortic endothelium-dependent relaxation. In the kidney, pioglitazone prevented the development of proteinuria and focal glomerulosclerosis to the similar extent as blood-pressure lowering ramipril. Renoprotection provided by either treatment was associated with a reduction in the cortical expression of profibrotic plasminogen activator inhibitor-1 and microvascular damage-inducing endothelin-1, and a limitation of interstitial macrophage influx. Treatment with PPARγ agonist, as well as ACE inhibitor comparably affected renal expression of renin-angiotensin system (RAS) components, normalizing increased renal expression of ACE and enhancing the expression of Mas receptor. Interestingly, combined pioglitazone and ramipril treatment did not provide any additional renoprotection. These results demonstrate that in a nondiabetic renal disease, such as adriamycin-induced nephropathy, PPARγ agonist pioglitazone provides renoprotection to a similar extent as an ACE inhibitor by interfering with the expression of local RAS components and attenuating related profibrotic and inflammatory mechanisms. The combination of the both agents, however, does not lead to any additional renal benefit.
    European journal of pharmacology 02/2014; · 2.59 Impact Factor

Full-text

View
0 Downloads
Available from