Article

Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells

Stanford University, Palo Alto, California, United States
AJP Cell Physiology (Impact Factor: 3.67). 05/2006; 290(4):C1139-46. DOI: 10.1152/ajpcell.00415.2005
Source: PubMed

ABSTRACT Recent studies have demonstrated that adipose-derived mesenchymal cells (AMCs) offer great promise for cell-based therapies because of their ability to differentiate toward bone, cartilage, and fat. Given that cartilage is an avascular tissue and that mesenchymal cells experience hypoxia during prechondrogenic condensation in endochondral ossification, the goal of this study was to understand the influence of oxygen tension on AMC differentiation into bone and cartilage. In vitro chondrogenesis was induced using a three-dimensional micromass culture model supplemented with TGF-beta1. Collagen II production and extracellular matrix proteoglycans were assessed with immunohistochemistry and Alcian blue staining, respectively. Strikingly, micromasses differentiated in reduced oxygen tension (2% O(2)) showed markedly decreased chondrogenesis. Osteogenesis was induced using osteogenic medium supplemented with retinoic acid or vitamin D and was assessed with alkaline phosphatase activity and mineralization. AMCs differentiated in both 21 and 2% O(2) environments. However, osteogenesis was severely diminished in a low-oxygen environment. These data demonstrated that hypoxia strongly inhibits in vitro chondrogenesis and osteogenesis in AMCs.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.
    Biochemical and Biophysical Research Communications 05/2014; 448(2). DOI:10.1016/j.bbrc.2014.04.096 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-invasive monitoring of living cells in vivo provides an important tool in the development of cell-based therapies in cartilage tissue engineering. High-resolution magnetic resonance imaging (MRI) has been used to monitor target cell populations in vivo. However, the side-effects on cell function of the labelling reagents, such as superparamagnetic iron oxide (SPIO), are still unclear. This study investigated the effect of SPIO particles on the chondrogenic differentiation of human bone marrow stromal cells (HBMSCs), neonatal and adult chondrocytes in vitro. Cells were labelled with SPIO for 24 h and chondrogenesis induced in serum-free medium including TGFβ3. For labelled/unlabelled cells, viability, morphology and proliferation were determined using CellTracker™ Green and PicoGreen dsDNA assays. The expression of SOX9, COL2A1 and ACAN was investigated using qRT-PCR after 2, 7 and 14 days. The results showed that viability was unaffected in all of the cells but cell morphology changed towards a 'stretched' phenotype following SPIO uptake. Cell proliferation was reduced only for labelled neonatal chondrocytes. SOX9 and COL2A1 expression decreased at day 2 but not at days 7 and 14 for labelled HBMSCs and adult chondrocytes; ACAN expression was unaffected. In contrast, SOX9 and COL2A1 expression were unaffected in labelled neonatal chondrocytes but a decrease in ACAN expression was seen at day 14. The results suggest that downregulation of chondrogenic genes associated with SPIO labelling is temporary and target cell-dependent. Resovist® can be used to label HBMSCs or mature chondrocytes for MR imaging of cells for cartilage tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 06/2013; 7(6). DOI:10.1002/term.544 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: hASCs [human ASCs (adipose derived stromal cells)] proliferate more rapidly in the presence of basic FGF-2 (fibroblast growth factor-2) and Dex (dexamethasone). We have examined the effects of expanding hASCs in media containing these two factors on their chondrogenic differentiation potential. Results show that the addition of FGF-2 and Dex to the expansion medium does not remarkably alter the chondrogenic potential of the cells induced by BMP-6 (bone morphogenetic protein-6), based on chondrogenic gene expression, sGAG (sulfated glycosaminoglycan) accumulation and immunohistochemical observation. This is in direct contrast to previously reported promotion of the osteogenic and adipogenic potential of hASCs by these two factors. Therefore, an expansion medium containing FGF-2, with or without Dex, is appropriate for the fast expansion of hASCs without compromising chondrogenic potential.
    Cell Biology International 02/2012; 36(7):611-5. DOI:10.1042/CBI20110503 · 1.64 Impact Factor

Preview

Download
1 Download