Article

Use of algae for removing heavy metal ions from wastewater: progress and prospects.

Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi, India.
Critical Reviews in Biotechnology (Impact Factor: 7.84). 10/2008; 25(3):113-52. DOI: 10.1080/07388550500248571
Source: PubMed

ABSTRACT Many algae have immense capability to sorb metals, and there is considerable potential for using them to treat wastewaters. Metal sorption involves binding on the cell surface and to intracellular ligands. The adsorbed metal is several times greater than intracellular metal. Carboxyl group is most important for metal binding. Concentration of metal and biomass in solution, pH, temperature, cations, anions and metabolic stage of the organism affect metal sorption. Algae can effectively remove metals from multi-metal solutions. Dead cells sorb more metal than live cells. Various pretreatments enhance metal sorption capacity of algae. CaCl2 pretreatment is the most suitable and economic method for activation of algal biomass. Algal periphyton has great potential for removing metals from wastewaters. An immobilized or granulated biomass-filled column can be used for several sorption/desorption cycles with unaltered or slightly decreased metal removal. Langmuir and Freundlich models, commonly used for fitting sorption data, cannot precisely describe metal sorption since they ignore the effect of pH, biomass concentration, etc. For commercial application of algal technology for metal removal from wastewaters, emphasis should be given to: (i) selection of strains with high metal sorption capacity, (ii) adequate understanding of sorption mechanisms, (iii) development of low-cost methods for cell immobilization, (iv) development of better models for predicting metal sorption, (v) genetic manipulation of algae for increased number of surface groups or over expression of metal binding proteins, and (vi) economic feasibility.

2 Bookmarks
 · 
511 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models.
    PLoS ONE 01/2014; 9(7):e101309. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the bioaccumulation of the heavy metals copper (Cu) and zinc (Zn) by the giant kelp, Macrocystis pyrifera, by exposing meristematic kelp tissue to elevated metal concentrations in seawater within laboratory aquaria. Specifically, we carried out two different experiments. The first examined metal uptake under a single, ecologically-relevant elevation of each metal (30 ppb Cu and 100 ppb Zn), and the second examined the relationships between varying levels of the metals (i.e., 15, 39, 60, 120, 240, and 480 ppb Cu, and 50, 100, 200, 300, 500, and 600 ppb Zn). Both experiments were designed to contrast the uptake of the metals in isolation (i.e., when only one metal concentration was elevated) and in combination (i.e., when both metals' concentrations were elevated). Following three days of exposure to the elevated metal concentrations, we collected and analyzed the M. pyrifera tissues using inductively coupled plasma atomic emissions spectroscopy. Our results indicated that M. pyrifera bioaccumulated Cu in all treatments where Cu concentrations in the seawater were elevated, regardless of whether Zn concentrations were also elevated. Similarly, M. pyrifera bioaccumulated Zn in treatments where seawater Zn concentrations were elevated, but this occurred only when we increased Zn alone, and not when we simultaneously increased Cu concentrations. This suggests that elevated Cu concentrations inhibit Zn uptake, but not vice versa. Following this, our second experiment examined the relationships among varying seawater Cu and Zn concentrations and their bioaccumulation by M. pyrifera. Here, our results indicated that, as their concentrations in the seawater rise, Cu and Zn uptake by M. pyrifera tissue also rises. As with the first experiment, the presence of elevated Zn in the water did not appear to affect Cu uptake at any concentration examined. However, although it was not statistically significant, we observed that the presence of elevated Cu in seawater appeared to trend toward inhibiting Zn uptake, especially at higher levels of the metals. This study suggests that M. pyrifera may be useful as a bio-indicator species for monitoring heavy metal pollution in coastal environments.
    ALGAE. 01/2011; 26(3).
  • Source
    Desalination and water treatment 10/2014; · 0.85 Impact Factor