Article

Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya

Misrata University, Misurata, Mişrātah, Libya
Pathogens and Global Health (Impact Factor: 1.66). 12/2005; 99(8):795-802. DOI: 10.1179/136485905X65134
Source: PubMed

ABSTRACT Using standard microbiological procedures, bacteria that are potentially pathogenic to humans were isolated from 150 houseflies collected in the Libyan city of Misurata (50 flies each from the Central Hospital, streets and abattoir). Salmonella spp., Yersinia enterocolitica and Edwardsiella tarda were isolated from flies collected on the streets and in the abattoir but not from those collected in the hospital. Shigella sonnei was detected in just one fly, which was collected in the abattoir. Of the flies collected in the hospital, streets and abattor, 42%, 42% and 32% were positive for Escherichia coli, 70%, 50% and 62% for Klebsiella spp., 2%, 20% and 10% for Aeromonas spp., 96%, 36% and 34% for Pseudomonas spp., 20%, 12% and 16% for Staphylococcus spp., and 24%, 22% and 18% for Streptococcus spp., respectively. When the antibiotic susceptibilities of the fly isolates were investigated, the Enterobacteria isolated from the houseflies collected in the hospital were found to be resistant to significantly more of the commonly used antibiotics that were tested than the Enterobacteria isolated from the flies caught in the streets or abattoir. Whatever the source of the flies from which they were collected, the Pseudomonas isolates frequently showed resistance to multiple antibiotics, with >50% each being resistant to at least 10 antimicrobial agents. Two isolates of Sta. aureus (both from flies collected in the hospital) were resistant to methicillin. The present study supports the belief that the housefly is a potential vector of multiple-antibiotic-resistant, pathogenic bacteria, including methicillin-resistant Sta. aureus, in the hospital environment. Given their mobility, it seems likely that houseflies carry such pathogens from hospitals to surrounding communities, and vice versa.

0 Followers
 · 
161 Views
 · 
0 Downloads
  • Source
    • "Pseudomonas aeruginosa is a pan-antibiotic resistant pathogen of humans and is commonly isolated from wild-caught house flies [10], [22]. In this study, our aim was to assess the temporospatial dynamics of fly-microbe interactions from (1) the microbe perspective, by determining the temporospatial fate of GFP-expressing bacteria (GFP-P. "
    [Show abstract] [Hide abstract]
    ABSTRACT: House flies associate with microbes throughout their life history. Bacteria ingested by adult flies enter the alimentary canal and face a hostile environment including antimicrobial defenses. Because the outcome of this interaction impacts bacterial survival and dissemination, our primary objective was to understand the temporospatial dynamics of fly-bacteria associations. We concurrently examined the temporospatial fate of GFP-expressing Pseudomonas aeruginosa (GFP-P. aeruginosa) in the house fly alimentary canal along with antimicrobial peptide (AMP) expression. Motile, viable GFP-P. aeruginosa were found in all regions of the alimentary canal and were culturable throughout the observation period (2-24 h). A significant decrease in recoverable bacteria occurred between 2 and12 h, followed by an increase between 12 and 24 h. qRT-PCR analysis showed expression of the AMPs cecropin, diptericin, and defensin both locally (gut) and systemically. Furthermore, mRNA of all AMPs were expressed throughout gut tissues, with some tissue-specific temporal variation. Interestingly, fluctuation in recoverable P. aeruginosa was associated with AMP protein expression in the gut (immunofluorescent signal detection), but not with mRNA (qRTPCR). In regards to vector competence, flies excreted GFP-P. aeruginosa throughout the 24 h period, serving as both reservoirs and disseminators of this bacterium. Collectively, our data show flies can harbor and disseminate P. aeruginosa, and that the interactions of fly defenses with bacteria can influence vector competence.
    PLoS ONE 11/2013; 8(11):e79224. DOI:10.1371/journal.pone.0079224 · 3.23 Impact Factor
  • Source
    • "The potential of adult houseflies to transmit pathogens such as Campylobacter [7] [8], E. coli O157:H7 [9], Salmonella spp. [10] [11], and Shigella spp. [12], between others, has been also reported. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to evaluate flies as a vector for foodborne pathogens. For this purpose, several flies were collected from different sites from rural areas. These flies were then analyzed for the presence of Enterobacteriaceae, Escherichia coli, Staphylococcus coagulase positive, and Listeria monocytogenes. Another aim of this study was to evaluate some virulence factors of the collected pathogens: susceptibility to some antibiotics and the presence of enterotoxigenic S. aureus. The results showed that flies in the presence of animals demonstrated a significantly higher prevalence of the studied pathogens than those collected in the kitchens, and kitchens situated in the closest proximity to the animal husbandry had a higher count than the kitchens in private houses. Enterobacteriaceae was the indicator organism with the highest microbial counts followed by E. coli and S. aureus. Listeria monocytogenes was not detected from any of the collected flies. The antimicrobial susceptibility test showed that the bacteria carried by the flies possessed multiantibiotic resistance profiles, and enterotoxin A was produced by 17.9% of the confirmed S. aureus isolates. These results demonstrate that flies can transmit foodborne pathogens and their associated toxin and resistance and the areas of higher risk are those in closer proximity to animal production sites.
    08/2013; 2013:718780. DOI:10.1155/2013/718780
  • Source
    • "The potential of adult houseflies to transmit pathogens such as Campylobacter [7] [8], E. coli O157:H7 [9], Salmonella spp. [10] [11], and Shigella spp. [12], between others, has been also reported. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to evaluate flies as a vector for foodborne pathogens. For this purpose, several flies were collected from different sites from rural areas. These flies were then analyzed for the presence of Enterobacteriaceae, Escherichia coli, Staphylococcus coagulase positive, and Listeria monocytogenes. Another aim of this study was to evaluate some virulence factors of the collected pathogens: susceptibility to some antibiotics and the presence of enterotoxigenic S. aureus. The results showed that flies in the presence of animals demonstrated a significantly higher prevalence of the studied pathogens than those collected in the kitchens, and kitchens situated in the closest proximity to the animal husbandry had a higher count than the kitchens in private houses. Enterobacteriaceae was the indicator organism with the highest microbial counts followed by E. coli and S. aureus. Listeria monocytogenes was not detected from any of the collected flies. The antimicrobial susceptibility test showed that the bacteria carried by the flies possessed multiantibiotic resistance profiles, and enterotoxin A was produced by 17.9% of the confirmed S. aureus isolates. These results demonstrate that flies can transmit foodborne pathogens and their associated toxin and resistance and the areas of higher risk are those in closer proximity to animal production sites.
Show more