Plasmodium falciparum: Polymorphism in the MSP-1 gene in Indian isolates and predominance of certain alleles in cerebral

Biomedical Informatics Centre, Chandigarh, Chandigarh, India
Experimental Parasitology (Impact Factor: 1.64). 04/2006; 112(3):139-43. DOI: 10.1016/j.exppara.2005.10.002
Source: PubMed

ABSTRACT Polymorphism in the block-2 region of merozoite surface protein-1 gene in 69 North Indian Plasmodium falciparum isolates was studied by PCR and RFLP using Dra-1 endonuclease. On the basis of molecular weight of the PCR products, considerable size polymorphism in target gene was seen and 69 isolates were classified into five allelic types. On RFLP, the isolates in three allelic types were further divided into two sub-allelic types each and thus eight genetic types could be identified. Interestingly, all five allelic types were identified in 47 isolates from uncomplicated (non-cerebral) malaria patients while only two allelic types (Type 2 and 3) were seen amongst 22 isolates from cerebral malaria patients. Furthermore, on RFLP, one subtype (2A) was predominantly seen in cerebral malaria patients and one subtype (3A) was exclusively found in cerebral malaria patients. These observations suggest that a few, comparatively more virulent isolates prevalent in an area may cause severe disease (cerebral malaria) which can be identified by molecular techniques like PCR-RFLP.

9 Reads
  • Source
    • "In Senegal, fine specificity of the antibodies to MSP1 block2 did not match with the infecting type and moreover was fixed over time, with no novel antibody specificity acquired upon cumulated exposure to multiple infections [27]. Interpretation of these studies has been limited insofar as molecular sequence data and sequence-specific serological responses were not gathered from the same population/setting [15], or sequence data were generated without exploring the immune response [9-14,16,17] or alternatively, immunological responses were studied without detailed knowledge of the actual sequence polymorphism of the local population [23-28,30,33]. Thus, whether the acquired antibodies to MSP1 block2 select for parasites presenting novel sequence variants and exert a significant diversifying selection at the epitope level remains to be studied. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic evidence for diversifying selection identified the Merozoite Surface Protein1 block2 (PfMSP1 block2) as a putative target of protective immunity against Plasmodium falciparum. The locus displays three family types and one recombinant type, each with multiple allelic forms differing by single nucleotide polymorphism as well as sequence, copy number and arrangement variation of three amino acid repeats. The family-specific antibody responses observed in endemic settings support immune selection operating at the family level. However, the factors contributing to the large intra-family allelic diversity remain unclear. To address this question, population allelic polymorphism and sequence variant-specific antibody responses were studied in a single Senegalese rural community where malaria transmission is intense and perennial. Family distribution showed no significant temporal fluctuation over the 10 y period surveyed. Sequencing of 358 PCR fragments identified 126 distinct alleles, including numerous novel alleles in each family and multiple novel alleles of recombinant types. The parasite population consisted in a large number of low frequency alleles, alongside one high-frequency and three intermediate frequency alleles. Population diversity tests supported positive selection at the family level, but showed no significant departure from neutrality when considering intra-family allelic sequence diversity and all families combined. Seroprevalence, analysed using biotinylated peptides displaying numerous sequence variants, was moderate and increased with age. Reactivity profiles were individual-specific, mapped to the family-specific flanking regions and to repeat sequences shared by numerous allelic forms within a family type. Seroreactivity to K1-, Mad20- and R033 families correlated with the relative family genotype distribution within the village. Antibody specificity remained unchanged with cumulated exposure to an increasingly large number of alleles. The Pfmsp1 block2 locus presents a very large population sequence diversity. The lack of stable acquisition of novel antibody specificities despite exposure to novel allelic forms is reminiscent of clonal imprinting. The locus appears under antibody-mediated diversifying selection in a variable environment that maintains a balance between the various family types without selecting for sequence variant allelic forms. There is no evidence of positive selection for intra-family sequence diversity, consistent with the observed characteristics of the antibody response.
    BMC Microbiology 10/2009; 9(1):219. DOI:10.1186/1471-2180-9-219 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adhesion of infected red blood cells (IRBCs) to the cell lining of microvasculature is thought to play a central role in the pathogenesis of severe malaria. Individual IRBC can bind to more than one host receptor and parasites with multiple binding phenotypes may cause severe disease more frequently. However, as most clinical isolates are multiclonal, previous studies were hampered by the difficulty to distinguish whether a multiadherent phenotype was due to one or more parasite population(s). We have developed a tool, based on cytoadhesion assay and GeneScan genotyping technology, which enabled us to assess on fresh isolates the capacity of adherence of individual P. falciparum genotypes to human receptors expressed on CHO transfected cells. The cytoadhesion to ICAM-1 and CD36 of IRBCs from uncomplicated and severe malaria attacks was evaluated using this methodology. In this preliminary series conducted in non immune travelers, IRBCs from severe malaria appeared to adhere more frequently and/or strongly to ICAM-1 and CD36 in comparison with uncomplicated cases. In addition, a majority genotype able to strongly adhere to CD36 was found more frequently in isolates from severe malaria cases. Further investigations are needed to confirm the clinical relevance of these data.
    Parasite 06/2008; 15(2):163-9. DOI:10.1051/parasite/2008152163 · 1.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background & objectives: The increase in Plasmodium falciparum infections which are associated with severe and complicated malaria and drug resistance has made control of malaria a difficult task. Extensive genetic polymorphism in P. falciparum has been reported from several parts of the world which affects the efficacy of sub-unit vaccines. The knowledge of genotypes of the parasite in a geographical region is therefore, important for effective management and control. The aim of the present study was to investigate the usefulness of random amplified polymorphic DNA (RAPD)-PCR technique for differentiation of P. falciparum isolates from patients presenting with severe (cerebral malaria) and mild malaria. Methods: Genetic polymorphism in 21 P. falciparum isolates obtained from patients found positive for P. falciparum by light microscopy was studied by RAPD-PCR analysis. Eleven RAPD primers were used for analysis of 21 P. falciparum isolates obtained from cerebral and non-cerebral malaria patients. Results: Of the 11 primers, only three (E-4, E-8, and R-8) produced useful polymorphic patterns. The cluster analysis based on UPGMA demonstrated that isolates causing cerebral malaria cluster separately from those causing uncomplicated malaria. However, the analysis of phylogenic tree showed that P. falciparum isolates causing non-cerebral and cerebral malaria clustered separately but showed relatedness. Interpretation & conclusions: The results of the present study showed that the RAPD-PCR was able to differentiate the isolates causing severe and mild malaria. The cluster analysis of the phylogenic tree suggested that the virulent strains evolved from less virulent strains as it clustered separately. RAPD technique may be useful in discriminating between the different isolates of the same species resulting in different clinical profiles.
    The Indian Journal of Medical Research 08/2012; 136(2):292-5. · 1.40 Impact Factor